NNLO predictions for dijet production in diffractive DIS

Daniel Britzger in collaboration with J. Currie, T. Gehrmann, A. Huss, J. Niehues, R. Zlebcik

> EDS Blois 2017 Prague, Czech Republic 27.06.2017

Diffractive Dijet Production in ep

In diffractive events the beam proton stays intact or dissociates into a low-mass hadronic system Y

At HERA about 7% of low-x events are diffractive

DIS variables: $Q^2 = -(k-k')^2$ $y = rac{p \cdot q}{p \cdot k}$

Dijet mass: M_{12}

Diffractive variables: $x_{IP} = 1 - \frac{E'_p}{E_p}$ $t = (p - p')^2$

> At LO: The momentum fraction entering the hard subprocess with respect to the diffractive exchange $z_{IP} = \frac{M_{12}^2 + Q^2}{M_{Y}^2 + Q^2}$

Collinear QCD factorization theorem in hard diffraction

Collinear factorization in hard diffraction

- For diffractive events with hard scale e.g. Q^2 or p_T of jets
- Factorization of the diffractive cross section into + partonic cross sections (NNLO)

J. Collins, Phys.Rev. D57 (1998) 3051

+ process independent DPDFs (currently determined only in NLO)

$$d\sigma(ep \to epX) = \sum_{i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \otimes d\sigma^{ie}(x, Q^{2})$$

For diffractive processes (including dijets) with scale high enough,
 -> factorization proven by Collins within perturbative QCD

Diffractive parton densities (DPDFs)

DPDFs

- DPDFs commonly determined from inclusive DDIS data
- DPDFs differ mainly in gluon component
 - -> gluon weekly constrained by inclusive DDIS data
- DPDFs obey standard DGLAP evolution equation
- For gluon dominated diffractive dijet production -> sizable DPDF uncertainty

NNLO QCD predictions

NNLO QCD predictions

- NNLOJET program based on antenna subtraction J. Currie, T. Gehrmann, A. Huss, J. Niehues [arXiv:1606.03991], [arXiv:1703.05977]
- NNLO proven to be successful for non-diff. jets in DIS [arXiv:1703.05977], [arXiv:1611.03421]
- Cancellation of IR divergences with local subtraction terms: moved across different phase space multiplicities
- The NLO 2jet and 3jet contributions verified against Sherpa and NLOJET++
- The non-perturbative corrections taken from published measurements (ZEUS did not published any hadronization corrections -> not included here!)

Calculations for dijets in diffractive DIS

Two steps of calculations

NNLOJET together with fastNLO

Matrix element calculations

- Perform phase space integration
- Calculate hard coefficients independent of PDFs and α_{s}

- Run calculation at nominal center-of-mass energy with E_p =920 GeV
- O(100-500k) CPU hours
- Store 'x'-dependence of ME's w.r.t. 920 GeV hadron in fastNLO format (and Q² and <p_T> dependence)

Convolutions with DPDFs

*x*_{*IP*} and *z*_{*IP*} integration performed using '*x*'-dependent pre-calculated ME's

- Calculations for E_p =820 GeV performed using 920 GeV ME's
- · Calculation equivalent to commonly used 'slicing' method

DDIS dijet measurements

6 'analysis' of inclusive dijets in DDIS at HERA

Total cross section – NLO vs. NNLO

Total cross sections

- inner band represents scale uncertainty outer bands include DPDF uncertainties
- DPDF: H1PDF20016 FitB
- Scale choice

 $\mu_R^2 = \mu_F^2 = Q^2 + \langle p_T^{\rm *jets} \rangle^2$

NLO

- Good agreeement with data
- Consistency with published calculations

NNLO

- predictions systematically overestimate data
- with exception of ZEUS measurement

NNLO about 30% higher than NLO

Reminder: DPDFs in NLO accuracy only No NNLO DPDFs available

Scale dependence: total cross section

NNLO with reduced scale dependence compared to NLO

lower with every order

dependences in NLO and LO

Total cross section – Scale dependence

Functional definition for scales

• Four choices studied, assuming

$$\mu^2 = \mu_R^2 = \mu_F^2$$

Alternative definitions

$$\begin{split} \mu^2 &= Q^2 + \langle p_T^{*\text{jets}} \rangle^2 \\ \mu^2 &= \frac{Q^2}{4} + \langle p_T^{*\text{jets}} \rangle^2 \\ \mu^2 &= \langle p_T^{*\text{jets}} \rangle^2 \\ \mu^2 &= Q^2 \end{split}$$

- p_{T} is characteristic for dijets
 - if not considered for scale, the cross section is substantially higher

Total cross section – DPDF dependence

Study different (NLO) DPDF sets

Total cross sections

Inner bars represent DPDF uncertainty
 outer bars include scale uncertainty

H1 FitA & FitB (2006)

- · Fits to inclusive data alone
- FitA and FitB very different although for inclusive data had similar chi2

H1 Fit-Jets & ZEUS SJ

- Both: fits of inclusive + dijet data
- H1 Fit-Jets & ZEUS SJ perform best

No DPDFs in NNLO accuracy available

Differential distributions

Histogram	H1	H1	H1	H1	H1	ZEUS
	HERA-II	HERA-II	HERA-II	HERA-I	$820{ m GeV}$	HERA-I
	FPS	VFPS	LRG	LRG	LRG	LRG
Q^2	~	\checkmark	\checkmark		\checkmark	\checkmark
$y [W]^*$	~	\checkmark	\checkmark	\checkmark	*	*
$p_{ m T}^{ m *, jet1} \; [p_{ m T}^{ m *, jet}]^{ m *}$	~	\checkmark	\checkmark	\checkmark	\checkmark	*
$p^{ m *, jet2}_{ m T}$			\checkmark			
$\langle p_{\mathbf{T}} angle$			\checkmark			
$\langle \eta_{ m lab}^{ m jet} angle \ [\eta_{ m jet}^*]^*$		\checkmark			\checkmark	*
$\Delta \eta_{ m lab}^{ m jet} [\Delta \eta^*]^*$	*	\checkmark	*	*	*	
$M_{ m X}^2$		\checkmark				\checkmark
x IP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$z_{I\!\!P}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
$ t ~[eta)]^*$	\checkmark					*
x_{γ}						*
$(Q^2;p_{\mathrm{T}}^{*,\mathrm{jet1}})$			\checkmark			
$(Q^2; z_{I\!\!P})$			\checkmark			\checkmark
$(Q^2 + (p_{\mathrm{T}}^{*,\mathrm{jet1}})^2; z_{I\!\!P})$				\checkmark		
$(p_{\mathrm{T}}^{*,\mathrm{jet1}};z_{I\!\!P})$						\checkmark

- In total 57 differential distributions analyzed
- Different analyses grouped for corresponding observables into a single plot

Inelasticity y

• note:

$$W = \sqrt{ys}$$

• NNLO higher for higher y, similar trend in data

- Different definitions for renorm. and factorization scales
- NNLO tends to improve the shape description of the data
- The scale choice $\mu^2 = Q^2$ predicts steeper Q² distribution
- Only small difference between studied scales All choices covered (mainly) by scale uncertainty

- Z_{IP} : fractional longitudinal momentum of the pomeron transferred to the dijet system
- z_{IP} sensitive to partonic structure of the diffractive exchange -> and thus to the DPDFs
- NNLO predicts an increase for higher z_{IP} for LRG analyses -> trend also seen in data (z_{IP} > 0.8)

DPDFs are extrapolated to that region

 $z_{I\!P} = rac{M_{12}^2 + Q^2}{M_{f v}^2 + Q^2}$

- Rapidity separation of the two leading jets $\Delta \eta$
- Mind: laboratory frame or γ^*p frame for different analyses
- Observable sensitive to higher order radiation
- NNLO improves shape-description of distributions

Double-differential distributions

For example: H1 HERA-II LRG: $d\sigma/dQ^2dp_T^{jet1}$

• Similar conclusions than from single-differential distributions

Extraction of α_s performed in NNLO (as H1 did)

- $\chi^{_2}$ improves in NNLO by 2 units for 14 d.o.f. in comparison to NLO
- Value of $\alpha_s(m_z)$ is unreasonably low, because of 'normalisation issue' (DPDFs!?)

 $\Delta \alpha_{s}(m_{z}) = 4\%$ (exp,had) + 4.5% (DPDF) + ⁺⁴_{-5.5%} (scale)

- Scale uncertainty decreases by factor 2.5 3 in comparison to NLO
- Scale uncertainty of similar size than α_s -uncertainty from inclusive jets by CMS @ 8TeV

Summary

- Dijets in diffractive DIS calculated in NNLO QCD (preliminary!)
- Differential distributions for various observables calculated and comparison to numerous measurements
- The NNLO cross sections are about ~30% higher than NLO
- The NNLO predictions overshoot the data for all H1 measurements and all studied (NLO) DPDFs
- Quantitative tests confirm the improved shape description of data in NNLO compared to NLO
- First(!) NNLO study of a diffractive process... more studies are needed for a better understanding of diffractive DIS (NNLO DPDFs, hadronization corrections...)
- NNLO ME's are stored in fastNLO format and can be made available

	Summary of experimental data set										
Collab.	Diffr.	\sqrt{s}	L	Studied	DIS	\mathbf{Dijet}	Diffractive				
	selection	[GeV]	$[pb^{-1}]$	observables	range	range	range				
H1 [3]	LRG	319	290		$4 < Q^2 < 100\mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$				
			$(\sim 15000 ev)$		0.1 < y < 0.7	$p_{\rm T}^{\rm *, jet2} > 4.0{\rm GeV}$	$ t < 1 {\rm GeV^2}$				
						$n_{ m jets} \geq 2$	$M_{\rm Y} < 1.6{\rm GeV}$				
						$-1 < \eta_{ m lab}^{ m jet} < 2$					
H1 [4] VFPS	VFPS	319	50		$4 < Q^2 < 80 \mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$0.010 < x_{I\!\!P} < 0.024$				
			(550 ev)		0.2 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t <0.6{\rm GeV^2}$				
						$n_{\rm jets} \ge 2$	$M_{\rm Y} = m_P$				
						$-1 < \eta_{\rm lab}^{\rm jet} < 2.5$					
H1 [5] FPS	FPS	319	156.6		$4 < Q^2 < 110 \mathrm{GeV^2}$	$p_{\rm T}^{*,{ m jet1}} > 5{ m GeV}$	$x_{I\!\!P} < 0.1$				
			(581 ev)		0.05 < y < 0.7	$p_{\mathrm{T}}^{*,\mathrm{jet2}} > 4.0\mathrm{GeV}$	$ t < 1 {\rm GeV^2}$				
						$n_{\rm jets} \ge 2$	$M_{\rm Y} = m_P$				
						$-1 < \eta_{\rm lab}^{\rm jet} < 2.5$					
H1 [6]	LRG	319	51.5		$4 < Q^2 < 80 {\rm GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5.5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$				
			(2723 ev)		0.1 < y < 0.7	$p_{\rm T}^{*,{\rm jet2}}>4.0{\rm GeV}$	$ t < 1 {\rm GeV^2}$				
						$n_{\rm jets} \ge 2$	$M_{\rm Y} < 1.6{\rm GeV}$				
						$-3 < \eta^{*\rm jets} < 0$					
H1 [7]	LRG	300	18		$4 < Q^2 < 80 {\rm GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$				
			(322ev)		$165 < W < 242 {\rm GeV}$	$p_{\rm T}^{\rm *, jet2} > 4.0{\rm GeV}$	$ t < 1 {\rm GeV^2}$				
						$n_{ m jets} \geq 2$	$M_{\rm Y} < 1.6{\rm GeV}$				
						$-1 < \eta_{\text{lab}}^{\text{jet}} < 2$					
						$-3 < \eta^{*\rm jets} < 0$					
ZEUS [8]	LRG	319	61		$5 < Q^2 < 100 \mathrm{GeV^2}$	$p_{\mathrm{T}}^{*,\mathrm{jet1}} > 5\mathrm{GeV}$	$x_{I\!\!P} < 0.03$				
			(5539 ev)		$100 < W < 250 \mathrm{GeV}$	$p_{\rm T}^{\rm *, jet2} > 4.0{\rm GeV}$	$ t < 1 {\rm GeV^2}$				
						$n_{\rm jets} \ge 2$	$M_{\rm Y} = m_P$				

Daniel Britzger – Diffractive dijets in NNLO

- NNLO predicts more jets in the forward (=proton) direction
- The inclusive jet variable filled for each jet in the event shows the biggest observed difference between NLO and NNLO factor 2!

$$\langle \eta^{
m jets}
angle = rac{1}{2} \left(\eta^{
m jet1} + \eta^{
m jet2}
ight) \qquad \eta^{
m *jets} = \eta^{
m *jet1,2} \; .$$

