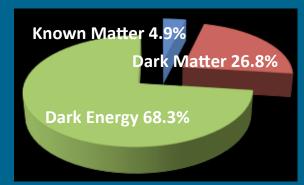
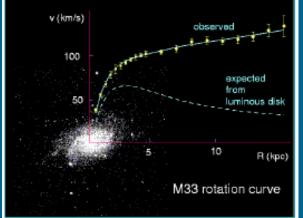

Future Circular Collider

Designing a Future Circular Collider: Challenges & Perspectives

By Dr. Michael Benedikt

For the Greek HSTs: P. Charitos, E. Gazis


Discoveries by colliders, Πού βρισκόμαστε σήμερα?

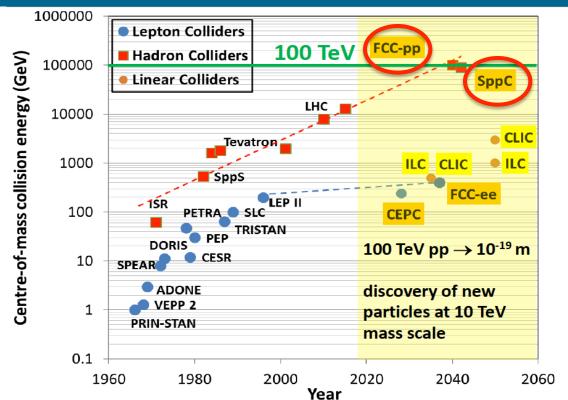


Colliders are powerful instruments in High Energy Physics for particle discoveries and precision measurements

Many open questions, Πού βρισκόμαστε σήμερα?

Standard model describes known matter, i.e. 5% of the universe! What about the remaining 95%?

galaxy rotation curves, 1933 - Zwicky


- what is dark matter?
- what is dark energy?

 \triangleright

- why is there more matter than antimatter?
- why do the masses differ by more than 13 orders of magnitude?
- b do fundamental forces unify in single field theory?
- what about gravity?
- Is there a "world equation theory of everything"? ...

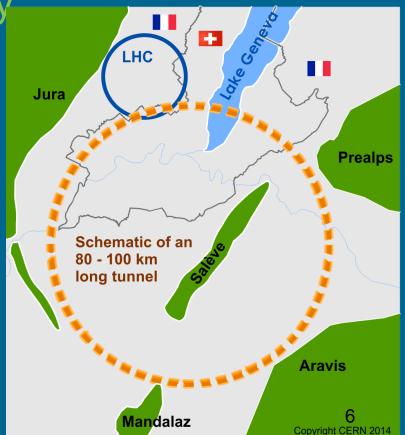
K. Borras

Roads to Discovery, Οι δρόμοι της Ανακάλυψης Particle colliders are powerful instruments in physics for discoveries and high precision measurements that could reveal new phenomena.

4

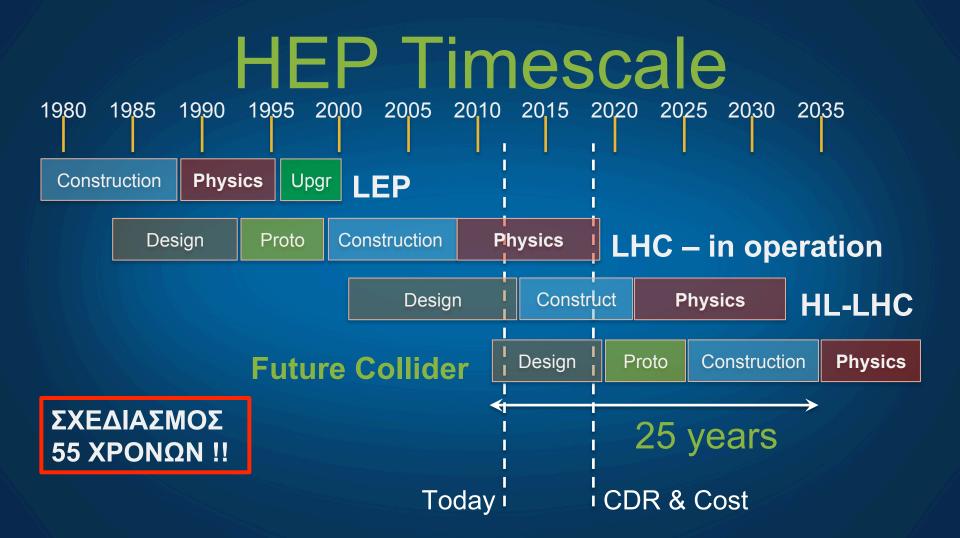
Motivation for launching the study – A global vision for the future of particle physics

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines." -European Strategy for Particle Physic


"A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window..." -US Particle Physics Strategy (P5)

"...ICFA supports studies of energy frontier circular colliders and encourages global coordination..." -ICFA

Expanding our Horizons Future Circular Collider Study International collaboration with CERN as host laboratory: exploring the feasibility of several particle collider scenarios with the aim


of significantly expanding the current energy and luminosity frontiers.

- **100 TeV pp**-collider and alternative e+e- collider as potential first step
- High-Energy LHC scenario
- 100 km tunnel infrastructure in Geneva area

Strategic Goals

- 1. Make funding bodies aware of strategic needs for research community (ENHMEP $\Omega\Sigma$ H FIA XPHMATO Δ OTH Σ H)
- 2. Provide sound basis to policy bodies to establish long-range plans in European research area (Σ TPATH Γ IKH Γ IA EPEYNA Σ THN EYP Ω Π H)
- 3. Strengthen capacity and effectiveness in high-tech domains ($\Pi PO\Omega\Theta H\Sigma H$ Y $\Psi H\Lambda H\Sigma$ TEXNO $\Lambda O\Gamma IA\Sigma$)
- 4. Provide a basis for long-term attractiveness of Europe as research area $(\Delta IATHPH\Sigma H TH\Sigma EYP\Omega \Pi A \ddot{I} KH\Sigma \Pi P\Omega TO \Pi OPIA\Sigma \Sigma THN EPEYNA)$

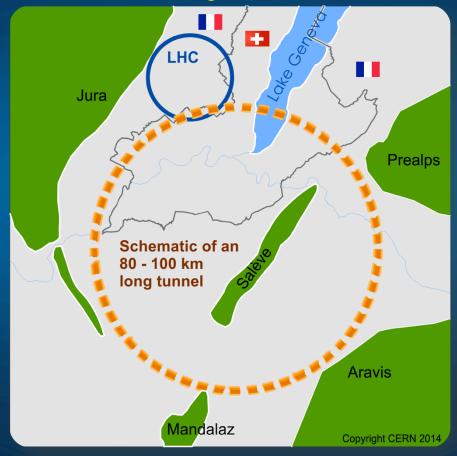
FCC-hh Key Parameters

Parameter	FCC-hh	LHC
Energy [TeV]	100 c.m.	14 c.m.
Dipole field [T]	16	8.33
#IP	2 main, +2	4
Luminosity/IP ^{main} [cm ⁻² s ⁻¹]	5 x 10 ^{³₄}	1 x 10 ³⁴
Energy/beam [GJ]	8.4	0.39
Synchr. rad. [W/m/apert.]	28.4	0.17
Bunch spacing [ns]	25 (5)	25

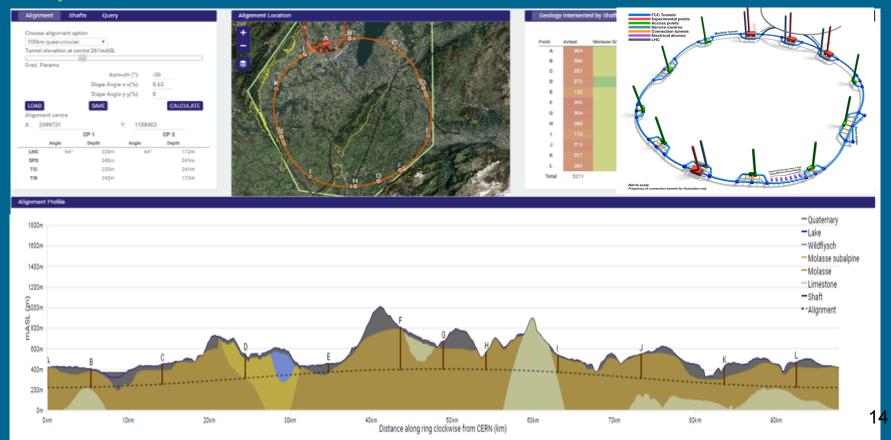
Tevatron (closed) Circumference: **6.2 km**

Energy: 2 TeV

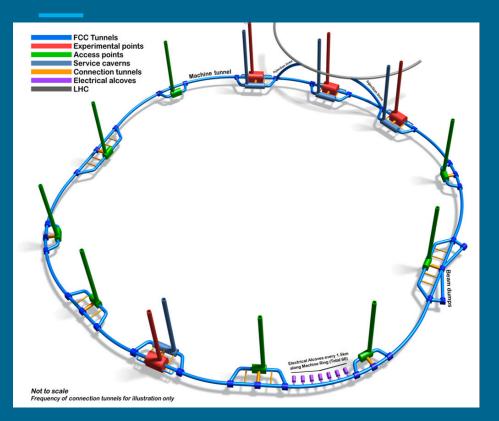
Large Hadron Collider Circumference: 27 km


Energy: - 14 TeV (pp) - 209 GeV (e⁺e⁻)

Future Circular Collider Circumference: 80-100 km


Energy:

- 100 TeV (pp)
- >350 GeV (e⁺e⁻)


Baseline Layout for Study

Geology and Civil Engineering studies Implementation of the 100 km tunnel

Future Circular Collider - Tunnel Layout, Τεχνικά Χαρακτηριστικά

100 km tunnel - 6 m inner diameter

4 large experimental caverns

8 service caverns

12 x 4 vertical shafts

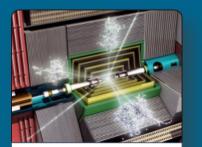
2 transfer tunnels (10 km)

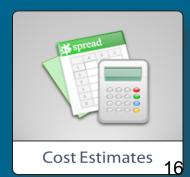
2 beam dump tunnels (4 km)

Different technological domains covered by the FCC study:

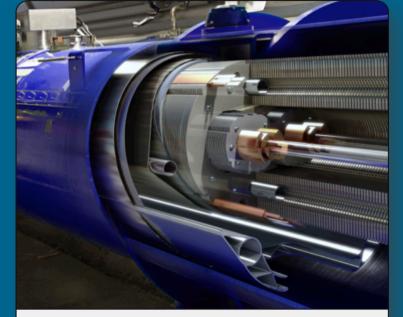
- Designs for future colliders.
- Tunnel Infrastructure in Geneva area.
- Technologies
 pushed in dedicated
 R&D programs.
- Discovery areas.
- Design of new detectors.


- Overall cost models.

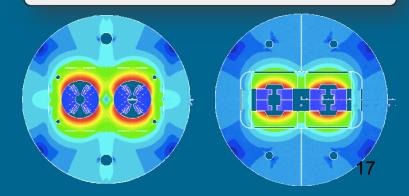



R&D Programs

Physics Cases



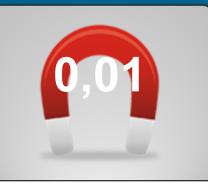
Experiments



FCC high-field magnets

- FCC requires 16 T magnets
- Design with sufficient aperture (50 mm)
- Meet operation requirements
 - margins,
 - field quality and stability,
 - cycled operation,
 - equipment protection,
 - reliability and maintenance

Cut through accelerator magnet



Earth Magnetic Field

Magnetic Button

Iron Magnet

Ultra high-field MRI

LHC Dipole Magnet

Time Indicator Superconducting magnets LHC magnets – from concept to series production

	980 1	 985 	 1990 	1995	2000	2005	2010
Conceptual studies							
R & D							
Development							
Industrialization							
Series production							
Industry participation					~ 15 year	rs	
Total			~	25 years			

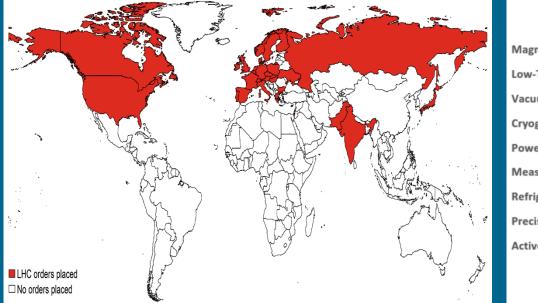
Push Novel Technologies

High-field Magnets

Novel Materials and Processes

Power Efficiency

Reliability & Availability



Large-scale Cryogenics

Global Scale Computing

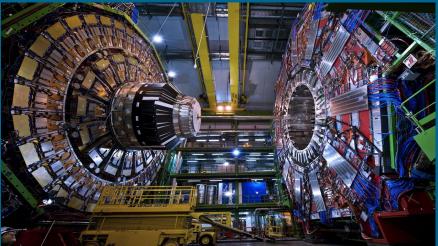
• Approx. 1400 firms located in 30 countries have collaborated with CERN for the LHC project during 1995-2008

Distribution of high-tech LHC orders Magnets Low-Temp. Materials Vacuum Comp. & Chambers Cryogens (Storage & Transport) **Power Cables And Conductors** Measurement And Regulation Refrigeration Equip. Precision Machining Work Active Electronic Comp. 20° 40° 60° 50°, 20°, 20°, 10° 40°, 60° 75°

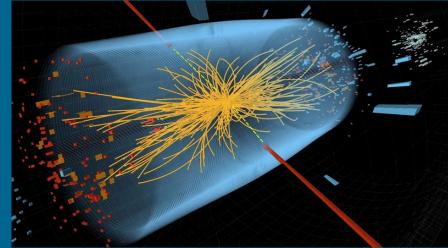
FCC collaboration status

- 116 research centers & universities
- European Commission
- 32 countries
- 22 companies
- Geographically balanced
- Topically complementary
- Promote ownership among Participants

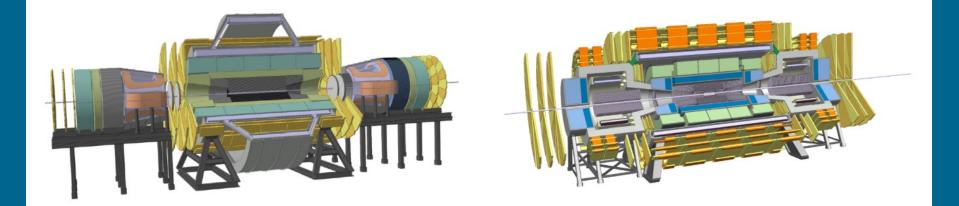
Future Circular Collider


CERN Prévessin

Large scale research and technical infrastructure conceptual design study 2014 – 2019. Driven by international contributions Establish long-term liaisons with industry.

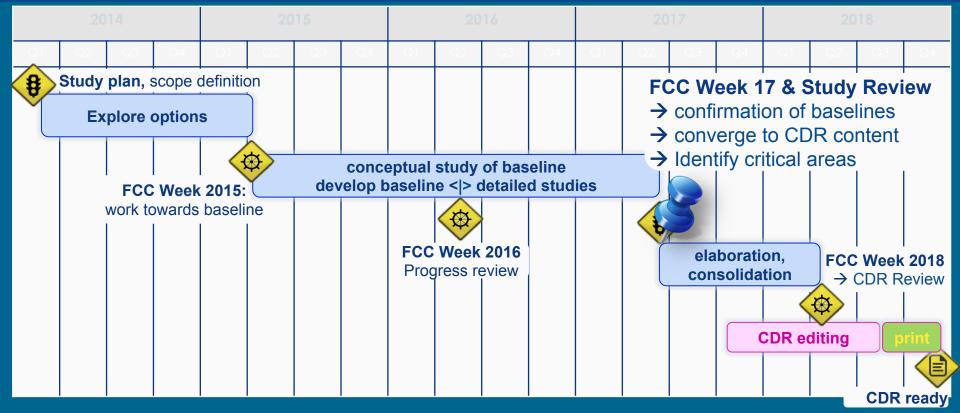

Establish long-term liaisons with industry.

Strengthen long-term attractiveness of Europe as leading large-scale research location

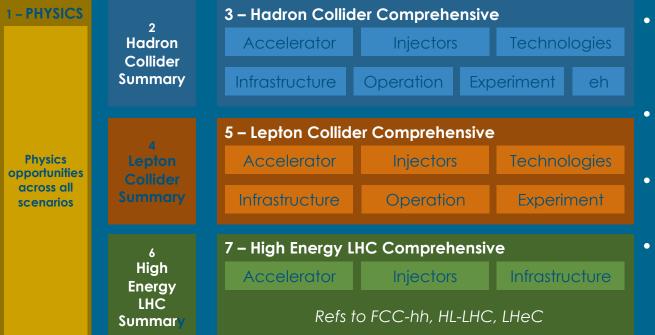

FCC-hh detector – new reference design

6T, 12m bore solenoid, 10Tm dipoles, shielding coil

- → 65 GJ Stored Energy
- → 28m Diameter
- → >30m shaft
- → Multi Billion project



- 4T, 10m bore solenoid, 4T forward solenoids , no shielding coil
- \rightarrow 14 GJ Stored Energy
- ightarrow Rotational symmetry for tracking !
- → 20m Diameter (≈ ATLAS)
- \rightarrow 15m shaft
- $\rightarrow \approx$ 1 Billion project



CDR Study Timeline

Conceptual Design Report

- Required for end 2018, as input for European Strategy Update
- Common physics summary volume
- Three detailed volumes FCChh, FCCee, HE-LHC
- Three summary volumes FCChh, FCCee, HE-LHC

FCC Advisory Committee

- IAC composition to cover all study areas, 17 members
- Important role as expert review committee for study and CDR preparation

	FCC International Advisory Committee						
Chair	Dissertori	Guenther	ner ETHZ				
Physics Experiments	Diemoz	Marcella	INFN	IT			
	Egorychev	Victor	ITEP	RU			
	Herten	Gregor	U. Freiburg	GE			
	Quigg	Chris	FNAL	US			
	Parker	Andrew	U. Cambridge	UK			
	Assmann	Ralph	DESY	GE			
Accelerator	Biscari	Caterina	ALBA-CELLS	ES			
Design	Fischer	Wolfram	BNL	US			
	Shiltsev	Vladimir	FNAL	US			
	Lebrun	Philippe	JUAS	FR			
	Minervini	Joe	MIT	US			
Technology	Mosnier	Alban	CEA	FR			
and	Ross	Marc	SLAC	US			
Infrastructure	Seidel	Mike	PSI	СН			
	Watson	Tim	ITER	ITER			
	Yamamoto	Akira	KEK	JP			

Study reviews towards CDR

- FCC week for presentation of information, followed by executive review session to discuss key issues.
- FCC week Berlin & 29/30 June
 @ CERN.
- FCC week 2018 (9-13 April 2018, Amsterdam) + mid-May @CERN

Callaboration & Industry Relations

ΕΛΛΗΝΙΚΗ ΣΥΜΜΕΤΟΧΗ

ΣΤΗ ΜΕΣΗ ΚΑΙ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ ΕΝΑΠΟΚΕΙΤΑΙ Η ΠΡΟΩΘΗΣΗ ΚΑΙ ΕΜΠΝΕΥΣΗ ΤΩΝ ΝΕΩΝ ΕΠΙΣΤΗΜΟΝΩΝ ΣΕ ΤΕΤΟΙΑ ΜΕΛΛΟΝΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΠΟΥ ΔΗΜΙΟΥΡΓΟΥΝ ΣΥΝΘΗΚΕΣ:

- ΥΨΗΛΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
- ΠΡΟΗΓΜΕΝΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
- ΑΝΑΒΑΘΜΙΣΗΣ ΤΗΣ ΟΙΚΟΝΟΜΙΑΣ