Teilchendetektoren in der Hochenergiephysik - Teil 2 -

Eva Sicking (CERN)

Deutsches Lehrerprogramm am CERN

4. Oktober 2017 - CERN, Genf, Schweiz

Übersicht - Teil 2

- Halbleiterdetektoren
- Szintillatoren
- Ø Kalorimeter
- Teilchenidentifikation
- Oetektorsysteme
- Zusammenfassung

Quellen - Teil 2

Quellen - Teil 2

- Vorlesung von Manfred Krammer zu "Detektoren", 2009
- Vorlesung von Norber Wermes zu "Tracking and Tracking Detectors", 2016
- Vorlesung von Kristof Schmieden zu "Teilchendetektoren", Deutsches Lehrerprogramm CERN, 2016
- Vorlesung von Lucie Linssen und Fergus Wilson zu "Particle Detectors", 2015
- Vorlesung von Michael Hauschild zu "Teilchendetektoren", Deutsches Lehrerprogramm CERN, 2013
- Vortrag von Erika Garutti zu "Digital and analog SiPMs for HEP and medicine", 2015
- Cherekov: https://en.wikipedia.org/wiki/Cherenkov_radiation
- CMS Silizim Tracker: http://cds.cern.ch/record/1081122
- ATLAS Event Display: https://atlas.cern/
- ALICE ITS dE/dx: http://inspirehep.net/record/1249388
- Szintillatoren: http://www.satprnews.com/, http://www.tradekorea.com/
- CALICE W-AHCAL: http://inspirehep.net/record/1391507
- CMS ECAL: http://cms.web.cern.ch/news/crystal-calorimeter
- CMS ECAL: https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=12030
- CLICdp Status: https://indico.cern.ch/event/577810/contributions/2451774/
- CALICE Übersicht: https://indico.cern.ch/event/563768/
- LHCb RICH: http://cerncourier.com/cws/article/cern/30585
- LHCb Cherekov: https://cds.cern.ch/record/1495721/
- ALICE HMPID: http://www.sciencedirect.com/science/article/pii/S0168900214005506
- ALICE TOF: http://alicematters.web.cern.ch/?q=CL_PID2
- ALICE TRD: http://www.sciencedirect.com/science/article/pii/S0168900214005014
- ATLAS: http://atlasexperiment.org/photos/detector-site-underground.html

Halbleiterdetektoren

Detektionsprinzip eines Halbleiterdetektors

- Festkörperdetektoren haben viele höhere Dichte als Gas-Detektoren
- Hoher Energieverlust auf relativ kurzer Strecke

 Halbleiterdetektoren sind analog zu Gas-Ionisationskammern

Halbleiterdetektoren

Bändermodel: Isolator - Halbleiter Metall

• Halbleiter: z.B. Silizium, Germanium, Diamant, GaAs, CdTe, ...

Dotiertes Silizium

- Silizium in 4. Gruppe des Periodensystems
- Silizium in Reinform hat Kristallform
- $\bullet\,$ Bei niedriger Temperatur sind alle Elektronen gebunden \rightarrow Nicht leitend
- Ersetze einige Siliziumatome im Gitter durch Atome aus den Nachbargruppen
- Scheinbar zu viele oder zu wenig Elektronen (= Löcher), aber elektrisch neutral

PN-Übergang

- Werden p- und n-dotiertes Silizium nebeneinander gebracht, ergibt sich eine Zone in der die Elektronen und Löcher rekombinieren
- Verarmungzsone
- Ladungsungleichgewicht erzeugt eletrisches Feld in Verarmungzsone

PN-Übergang: Externe Spannung

• Vergrößere Verarmungszone durch Anlegen externer Spannung in selbe Richtung

Segmentierung in Pixels/Strips

- Ein ionisierendes Teilchen regt beim Durchgang e⁻ (aus dem Valenzband ins Leitungsband) an und erzeugt so e⁻-Loch-Paare
- e⁻-Loch-Paare driften im elektrischen Feld zu den Elektroden und induzieren ein elektrisches Signal
- Segmentiert man die Elektrode, erreicht man hohe Ortsauflösung
- Kleine Strukturen von wenigen 10 μm erreichbar; viel Erfahrung in Elektronikindustrie

Halbleiterdetektoren

Auslese: Hybrid oder Monolithisch

- Sehr aktiver Forschungsbereich
- Viele verschiedene Konzepte (Sensoren, Auslese)
- Pixelgrößen von wenigen $10 \, \mu m \rightarrow$ Gute Ortauflösung
- Dicken von wenigen 100 μm
- - \rightarrow Wenig Streuung

Beispiele: CMS versus OPAL

- Zwei Generationen von Silizium-Spurdetektoren
 - LEP: OPAL-Experiment $\rightarrow 1 \text{ m}^2$, vorne
 - $\bullet~$ LHC: CMS-Experiemnt $\rightarrow~200\,m^2,$ im Hintergrund

Beispiel: Spurrekonstruktion

Beispiel: Impulsmessung

- Impuls $p = mv = \gamma m_0 v$
- Lorentzkraft: $F_L = Q \cdot [v \times B]$
- Zentripedalkraft: $F_Z = m \cdot v^2/r$
- $F_L = F_Z \rightarrow p/r = Q \cdot B \rightarrow p = Q \cdot B \cdot r$
- Gute Impulsauflösung bei großen B und Detektorradien

Beispiel: Energieverlust

Szintillatoren

Szintillation: Einführung

- Szintillation: Emission von Photonen nach Anregung von Atomen oder Molekülen des szintillierenden Materials durch energiereiche Strahlung (400-1000 eV)
- Sehr komplexer Vorgang
 - Viele Zwischenniveaus
 - Strahlende und nicht strahlende Übergänge
 - Anregung von anderen Elektronen durch emittiertes Photon

Szintillation: Materialien

- Umwandlung von einem Bruchteil der Anregungsenergie in Licht
- Auslese z.B. mit Photomultipliertubes oder Silizium-Photomultipliern

- Anorganische Kristalle
 - Nal, PbWO₄, BaF, ...
 - Relativ langsam: 10-1000 ns Abklingzeit
 - Hohe Dichte
 - Wellenlänge: 300-500 nm
 - z.T. hygroskopisch

- Plastikszintillator (organisch):
 - Reichhaltige Auswahl
 - Schnell: 1-10 ns Abklingzeit
 - Geringe Dichte
 - Wellenlänge: 300-400 nm
 - Einfach zu bearbeiten, beliebige Formen

Szintillator mit PMT-Auslese

Szintillator mit SiPM-Auslese

Komponenten im SiPM-Pixel und ihre Funktion

- "Silicon PhotoMultipiers"
 = SiPM
- Matrix von Photodioden im Geiger-Modus
- Ein Photon \rightarrow Fotoelektrischen Effekt \rightarrow Lawine von Elektronen $(10^5 - 10^7 \text{ e}^-)$
- Lawine wird mit Quench-Widerständen abgebrochen
- Nachweis von einzelnen Photonen

Szintillator mit SiPM-Auslese

Komponenten im SiPM-Pixel und ihre Funktion

- "Silicon PhotoMultipiers"
 = SiPM
- Matrix von Photodioden im Geiger-Modus
- Ein Photon \rightarrow Fotoelektrischen Effekt \rightarrow Lawine von Elektronen $(10^5 - 10^7 \text{ e}^-)$
- Lawine wird mit Quench-Widerständen abgebrochen
- Nachweis von einzelnen Photonen

Kalorimeter

Kalorimeter: Konzept

- Ein Kalorimeter ist ein dichter Detektor, der ein zu messendes Teilchen vollständig absorbiert
- Das Teilchen erzeugt einen Schauer von Sekundärteilchen, die ihre Energie im Detektor deponieren
 - Wärme
 - Ionisation
 - Atomare-Anregung
 - Bremsstrahlung
 - Cherenkov-Licht
 - Szintillations-Licht
- Die Form des Schauers hängt vom Teilchen und seiner Energie ab
- Ideales Kalorimeter: Signal ∝ deponierte Energie ∝ Teilchenenergie

Kalorimeter: Konzept

- Ein Kalorimeter ist ein dichter Detektor, der ein zu messendes Teilchen vollständig absorbiert
- Das Teilchen erzeugt einen Schauer von Sekundärteilchen, die ihre Energie im Detektor deponieren
 - Wärme
 - Ionisation
 - Atomare-Anregung
 - Bremsstrahlung
 - Cherenkov-Licht
 - Szintillations-Licht
- Die Form des Schauers hängt vom Teilchen und seiner Energie ab
- Ideales Kalorimeter: Signal ∝ deponierte Energie ∝ Teilchenenergie

Sampling-Kalorimeter

Kalorimeter: Elektromagnetischer Schauer

 Strahlungslänge X₀: Strecke, in der die Projektilenergie durch Strahlungsverluste um 1/e (=63%) kleiner wird

- Ein einfallendes e[±] emittiert via Bremsstrahlung ein Photon
- Das erzeugte Photon erzeugt ein $e^+ e^-$ -Paar
- Rasch anwachsende Zahl von e⁺, e⁻ und γ bis E_c erreicht ist
- Ähnlicher Schauer für einfallendes Photon

Kompakter Schauer

Material	Strahlungslänge X_0 (cm)
Luft	30000
Stahl	1.76
Blei	0.56
Uran	0.33

Kalorimeter: Hadronischer Schauer

- Geladenes Hadron: Komplimentäre Information zum Spurdetektor
- Neutrales Hadron: Einzige Möglichkeit der Messung
- Starke Interaktion hat kleineren Wirkungsquerschnitt
- \rightarrow Hadronschauer haben höhere Eindringtiefe als elektromagnetische Schauer

- Hadron wechselwirkt über die starke Kraft mit Detektormaterial
 - Erzeugung von Mesonen und Baryonen, Spallation, Kernanregung, Kernspaltung
 - Produzierten Teilchen erzeugen weitere Schauerteilchen, verlieren Energie durch lonisation und Anregung
 - Mesonen (zerfallen in Photonen) → Ausbildung von elektromagnetischen Teil-Schauer im hadronischen Schauer

Material	Absorptionslänge λ_a (cm)
Luft	75000
Stahl	16.8
Blei	17.6
Uran	11.0

Vergleich: Schauer-Tiefe

Homogene Kalorimeter

PbWO₄-Kristalle des CMS elektromagnetischen Kalorimeters (95% Blei)

- Das Detektormaterial ist sowohl das passive Material, das Teilchen absorbiert, also auch das aktive Material, das Signal produziert
 - Kristalle
 - Bleiglas, PbWO₄
 - Flüssige Edelgase
- Solche Materialien werden fast ausschliesslich für elektromagnetische Kalorimeter verwendet
- Vorteil: Sehr gute Energieauflösung (der gesamte Schauer wird gemessen)
- Nachteil: Kosten, begrenzte Informationen zur Ausdehnung und Substruktur des Schauers

Kalorimeter

Aktiver Teil eines Sampling-Kalorimeters

CALICE Szintillator-Kachel $(3 \times 3 \text{ cm}^2)$ + SiPMs

- Szintillatoren
- Silizium-Sensoren
- Flüssiges Edelgas
- Gas-Detektoren
- Vorteil: geringere Kosten, mehr Information über Showerform
- Nachteil: Nur ein Teil des Schauers wird gesampelt, schlechtere Energieauflösung

CALICE Silizium-Dioden $(1 \times 1 \text{ cm}^2 \text{ in } 6 \times 6\text{-Block})$

Beispiel: Testen von Siliziumsensoren

Probestation zum Testen von Siliziumsensoren für das CMS-Kalorimeter-Upgrade

Dunkelstrom einzelner Dioden auf einem 6-Zoll-Sensor bei 1000 V

Kalorimeter

Beispiel: Sampling-Kalorimeter

Teilchendetektoren in der Hochenergiephysik

4. Oktober 2017 30 / 53

Kalorimeter

Hadronische Schauer: Hohe Granularität

• Sampling-Kalorimeter erlauben Analyse von Schauerform und Sub-Struktur

- 3 × 3 cm² Zellen, analoge Energieinformation pro Zelle
- 1 × 1 cm² Zellen, zähle Zellen über Schwelle

[†]Hits von identifizierten Teilchen im Schauer

 1 × 1 cm² Zellen, zähle Zellen über 3 Schwellen

Energiemessung

$$rac{\sigma_E}{E} \propto rac{\sigma_N}{N} pprox rac{\sqrt{N}}{N} = rac{1}{\sqrt{N}}$$

• Maximal erzeugbare Anzahl an detektierbaren Teilchen

$$N_{\rm max} = E/\eta$$

- η die Schwellwertenergie = minimale Energie zur Erzeugung eines detektierbaren Sekundrteilchens
 - Siliziumdetektoren: $\eta \approx 3.66 \, \text{eV}$
 - Gasdetektoren: $\eta \approx 30 \, eV$
 - Plastikszintillatoren: $\eta\approx 100\,\text{eV}$
- Weitere Gründe für eine schlechtere Energieaufösung
 - Ineffizienzen bei Photonenmessung
 - Leakage
 - Fluktuationen im Schauer: Sampling, Landau, Spurlänge
 - Ungleichförmigkeiten, Kalibrationsfehler

Weitere Detektoren zur Teilchenidentifikation

Cherenkov-Detektoren

- Öffnungswinkel abhängig von Geschwindigkeit $\cos(\theta) = c/v$
 - Messung des Öffnungswinkels über Messung des Lichtkegelradius
 - \rightarrow Geschwindigkeitsmessung
 - \rightarrow Bestimmung der Masse

Cherenkov-Detektoren bei ALICE und LHCb

• Beispiel-Ergebnisse:

Unterscheidung von Teilchen über Cherenkov-Winkel bei ALICE und LHCb

Teilchenidentifikation

Flugzeitmessung: Beispiel ALICE TOF

ALICE Time-Of-Flight-Detektor

Flugzeitmessung: ALICE TOF

- ALICE TOF
 - Widerstandsplattenkammern: Multigap Resistive Plate Chamber (MRPC)
 - Gas-Detektor
 - Zwei Stapel aus je 6 Lagen
 - Hochspannung zwischen Platten
 - $\bullet\,$ Akkurater Abstrand von 250 μm
 - $\rightarrow \mathsf{Angelschnur}$
 - Zeitauflösung von 85 ps
- Verwendung von RPCs zur Zeitmessung auch in ATLAS und CMS

Teilchenidentifikation

Übergangsstrahlungsdetektoren

- Interesse an Elektronen in großem Pionuntergrund
- Elektronen haben höheres $\gamma = E/E_0$ als Pionen
- Nur sie erzeugen Übergangsstrahlung beim Durchgang durch Radiator
- Diese hochenergetischen Photonen (Röntgen) können das Gas zusätzlich ionisieren
- Signal kann verwendet werden um Elektronen und Pionen zu unterscheiden

Eva Sicking (CERN)

Detektorsysteme

Anforderung an LHC-Detektoren

- Kollisionen bei höchsten Energien
 - Gute Impulsauflösung bis hin zur TeV Skala
- Hohe Luminosität (große Kollisionsrate)
 - Schnelle Detektoren (nur 25 ns zwischen den Kollisionen)
- Große Teilchendichte
 - Hohe Granularität, ausreichend kleine Detektorelemente
- Hohes Strahlungsniveau (viele stark wechselwirkende Teilchen)
 - Strahlung hauptsächlich durch die Kollisionsteilchen
 - Strahlenharte Detektoren und Elektronik (Lebensdauer 10+ Jahre)
- Große Kollaborationen
 - O(3000) Physikers jeweils in ATLAS und CMS
 - Kommunikation, soziologische Aspekte
 - Viele Meetings, Telefon- und Videokonferenzen

Anforderung an zukünftige e⁺ e⁻-Detektoren

• Detektor für zukünftige e⁺ e⁻ Beschleuniger, z.B. CLIC, ILC, FCC-ee, CEPC

- Weniger Strahlung:
 - Detektoren müssen weniger strahlenhart sein
- Hochpräzisionsmessung:
 - Vertex- und Spurendetektoren mit sehr wenig Material
 - Hochgranulare Kalorimeter

LHC-Detektoren

4. Oktober 2017 41 / 53

Untergrund:ATLAS

- $\bullet~$ Große Kaverne $\sim 100~m$ unter der Erde
- Schächte für Material, Aufzug, Treppen
- Stabile Gesteinsschicht entlang des ganzen LHCs, Abschirmung von Strahlung

Eva Sicking (CERN)

Eva Sicking (CERN)

Eva Sicking (CERN)

Eva Sicking (CERN)

Detektorsysteme

Beispiel: $H \rightarrow \gamma \gamma$

- Rekonstruiere kurzlebiges Higgsteilchen über Zerfallsprodukte, hier 2 Photonen
- Kombiniere alle gemessenen Photonen miteinander
- Peak auf Untergrund \rightarrow Higgs-Messung
- Higgs-Masse = 125 GeV

Trigger: Beispiel ATLAS

• Kollisionsrate: 40 MHz mit \sim 20 überlappenden Kollisionen (10⁹ Koll./s)

- Mögliche Aufzeichnungsrate: ~300 Kollisionen/s (~450 MB/s)
- Hocheffizienter Trigger (schnelle Auswahl) nötig
 - $\bullet\,$ Rohdaten (1 PB/s) werden bis zur Trigger-Entscheidung in Pipeline gespeichert

• Zukunft: Trend zur Echtzeitrekonstruktion

Pileup

Zusammenfassung

Zusammenfassung

- Aufgabe von Teilchendetektoren
 - Vermessen einer Teilchenwechselwirkung mit möglichst hoher Effizienz und Vollständigkeit: Impuls + Energie aller Teilchen, Teilchenidentität
- Impulsmessung (Spurdetektor)
 - Innerste Detektorlagen, Spurpunkte entlang der Teilchenbahn
 - Gas-basierte und Silizium-Halbleiterdetektoren
 - Impulsmessung über Krümmung im Magnetfeld
 - Myondetektoren als äusserte Detektorlage
- Energiemessung (Kalorimeter)
 - Schweres Detektormaterial, Bildung und Nachweis eines Teilchenschauers
 - Elektromagnetisches Kalorimeter: Elektronen, Positronen, Photonen
 - Hadron-Kalorimeter: Hadronen z.B. Pionen, Kaonen, Protonen, Neutronen
 - Homogenes Kalorimeter: gute Energieauflösung
 - Sampling Kalorimeter: Schauerprofil und -position
- LHC-Detektoren
 - Unterschiedliche, komplementäre Detektorkonzepte
 - Sehr hohe Primärdatenrate, benötigt effizienten Trigger zur Filterung
- Zukünftige Detektoren, z.B. für CLIC ($e^+ e^-$)
 - $\bullet~$ Präzisionsmessung \rightarrow Leichter Tracker, hochgranulare Kalorimeter
 - Geringere Anforderungen an Strahlenhärte

