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UFO
• Generator independent output with full model 

information	

• Contains the list of particles, parameters,  
vertices, decays (1to 2), coupling orders	

• vertices are split into Lorentz structures, colours 
and couplings and all are included in the model!

�igs T a
ij �µ

• Used in MG5, Herwig, Gosam, Sherpa
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Madgraph5_aMC@NLO

• Computation of the born	

• Computation of the real	

• Computation of the loop	

• Matching with parton 
shower ‘à la’ MC@NLO

Automated NLO computation
MG5

MadFKS (IR)

MadLoop
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MadLoop

• Box, Triangle, Bubble and Tadpole are known 
scalar integrals	

• Loop computation = find the coefficients	

• Tensor reduction (OPP)	

• R : rational terms should be partially provided	

• UV counterterm vertices have to be provided

Prelims History Present

Tensor Reduction 2

A1−loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1

D̄0
Bubblei =

∫

dnq̄ 1

D̄0D̄1

Trianglei =
∫

dnq̄ 1

D̄0D̄1D̄2

Boxi =
∫

dnq̄ 1

D̄0D̄1D̄2D̄3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)
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To be provided : R2 

Finite set of vertices that can be computed once 
for all

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30

d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
ddq

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m2

i and where mi are the masses
of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
ddq

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

⌘µ ⌫⌘µ ⌫ = d, (4)

�µ�µ = d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �u are chosen to
anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2
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R2 example

q̄µ γ
γ

1

2

Q̄2

Q̄1

Q̄1 = q̄ + p1 = Q1 + q̃
Q̄2 = q̄ + p2 = Q2 + q̃

D̄0 = q̄2

D̄1 = (q̄ + p1)2

D̄2 = (q̄ + p2)2

γe+e− n

∫

dnq̄
q̃2

D̄0D̄1D̄2
= −

iπ2

2
+ O(ϵ) ,

∫

dnq̄
qµqν

D̄0D̄1D̄2
= −

iπ2

2ϵ
gµν + O(1) ,

R2 = −
ie3

8π2
γµ + O(ϵ) ,

µ • = −
ie3

8π2
γµ

γe+e− R2

R2

R1

R = R1 + R2

R1

R1 N(q)

ϵ (q̃ · q) = 0 N̄(q̄)

4 ϵ

N̄(q̄) = N(q) + Ñ(q̃2, q, ϵ) .

N(q) 4 Ñ(q̃2, q, ϵ)

R2

R2 ≡
1

(2π)4

∫

dn q̄
Ñ(q̃2, q, ϵ)

D̄0D̄1 · · · D̄m−1
≡

1

(2π)4

∫

dn q̄R2 .

Ñ(q̃2, q, ϵ)

Ā(q̄)

n q̄ n γ

γ̄µ̄ n ḡµ̄ν̄ 4

q̄ = q + q̃ ,

γ̄µ̄ = γµ + γ̃µ̃ ,

ḡµ̄ν̄ = gµν + g̃µ̃ν̃ .

n

vµ 4

q̄ · v = q · v and v̄ = v .

R2

R2

R2

γe+e−

N̄(q̄) ≡ e3
{

γ̄β̄ (Q̄1 + me) γµ (Q̄2 + me) γ̄β̄
}

= e3
{

γβ(Q1 + me)γµ(Q2 + me)γ
β

− ϵ (Q1 − me)γµ(Q2 − me) + ϵq̃2 γµ − q̃2 γβγµγ
β
}

,

ϵ γ

N(q)

Ñ(q̃2, q, ϵ) Ñ(q̃2, q, ϵ)

ϵ γ {γµ, γ̃ν} = 0

q̄µ γ
γ

1

2

Q̄2

Q̄1

Q̄1 = q̄ + p1 = Q1 + q̃
Q̄2 = q̄ + p2 = Q2 + q̃

D̄0 = q̄2

D̄1 = (q̄ + p1)2

D̄2 = (q̄ + p2)2

γe+e− n

∫

dnq̄
q̃2

D̄0D̄1D̄2
= −

iπ2

2
+ O(ϵ) ,

∫

dnq̄
qµqν

D̄0D̄1D̄2
= −

iπ2

2ϵ
gµν + O(1) ,

R2 = −
ie3

8π2
γµ + O(ϵ) ,

µ • = −
ie3

8π2
γµ

γe+e− R2

R2

R1

R = R1 + R2

R1

R1 N(q)

q̄µ γ
γ

1

2

Q̄2

Q̄1

Q̄1 = q̄ + p1 = Q1 + q̃
Q̄2 = q̄ + p2 = Q2 + q̃

D̄0 = q̄2

D̄1 = (q̄ + p1)2

D̄2 = (q̄ + p2)2

γe+e− n

∫

dnq̄
q̃2

D̄0D̄1D̄2
= −

iπ2

2
+ O(ϵ) ,

∫

dnq̄
qµqν

D̄0D̄1D̄2
= −

iπ2

2ϵ
gµν + O(1) ,

R2 = −
ie3

8π2
γµ + O(ϵ) ,

µ • = −
ie3

8π2
γµ

γe+e− R2

R2

R1

R = R1 + R2

R1

R1 N(q)

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
ddq

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m2

i and where mi are the masses
of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
ddq

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

⌘µ ⌫⌘µ ⌫ = d, (4)

�µ�µ = d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �u are chosen to
anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2

’t Hooft Veltman	
scheme
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Computed in MadLoop :R1

R1

q̃2

d, c, b, a

n R1

R1

q̃2 d, c, b

q̃2

m2
i → m2

i − q̃2 .

n

n

q̃2

q̃2 d, c, b

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)2

3

]

+ O(ϵ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ϵ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ϵ) .

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) .

Z̄i

Like for the 4 dimensional part but with a different set of 
integrals

Due to the ℇ dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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UV
What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30

What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30Finite set of vertices that can be computed once 
for all

Relations fixed by the Lagrangian (finite part)
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Renormalization
External parameters

Same for the conjugate field

Internal parameters are renormalised by replacing the 
external parameters in their expressions

one-loop ingredients for other NLO tools than MadGraph5 aMC@NLO like GoSam [18] for
example which is already using the UFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well defined model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, in MadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is briefly introduced in Sect. 4 to
fix the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redefinition of the free parameters and of the
fields

x0 � x+ �x,

�0 � (1 +
1

2
�Z��)�+

X

�

1

2
�Z���, (6)

where x is an external parameter and � and � are fields with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized fields or
parameters, the renormalization constant are preceded by a �. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be fixed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is fixed by their dependence on
the external parameters. The same self renormalization constants Z�� are used for both the
fields and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z��)�†

�
) @µ�0@µ�

†
0 � (1 + �Z��)@

µ�@µ�
† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated field is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z
⇤
��)�

†

�
) @µ�0@µ�

†
0 � (1 + <�Z��)@

µ�@µ�
†. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the fields
and their conjugates. Similarly, external parameters in FeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

gg (1 + �Zgg)TL
ggg

�
1 + 1

2�↵s +
3
2�Zgg

�
TL

gggg (1 + �↵s + 2�Zgg)TL
Fixed by
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identified to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are fixed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as

i�ij (�p�mi) + i
⇥
fL
ij

�
p2
�
�p�� + fR

ij

�
p2
�
�p�+ + fSL

ij

�
p2
�
�� + fSR

ij

�
p2
�
�+

⇤
, (10)

where �± = 1±�5

2 and the f functions contain both the loop and counterterm contributions, the
renormalization conditions in the on-shell scheme for the fermions are

<̃
⇥
fL
ij

�
p2
�
mi + fSR

ij

�
p2
�⇤ ���

p2=m2
i

= 0,

<̃
⇥
fR
ij

�
p2
�
mi + fSL

ij

�
p2
�⇤ ���

p2=m2
i

= 0,

<̃

2mi

@

@p2
⇥�
fL
ii

�
p2
�
+ fR

ii

�
p2
��

mi + fSL
ii

�
p2
�
+ fSR

ii

�
p2
�⇤

+ fL
ii

�
p2
�
+ fR

ii

�
p2
�� ���

p2=m2
i

= 0.

(11)

The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent flavors
in the wave function renormalizations. The renormalized fields are therefore mass eigenstates. If
the two fermion flavors are massless, the first two conditions are trivially satisfied and therefore
are replaced by <̃fL

ij (0) = 0 and <̃fR
ij (0) = 0 to fix the renormalization constants. For a

Majorana fermions  , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion fields are related by

 R = ei↵ ( L)
c (12)

where ↵ is the Majorana phase. The two first conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i�ij
�
p2 �m2

i

�
+ ifS

ij

�
p2
�
, (13)

and the renormalization conditions read

<̃
⇥
fS
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fS
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fS
ii

�
p2
�� ���

p2=m2
i

= 0. (14)

Finally, if the renormalized two-point function of a vector is written as

�i�ij⌘µ⌫
�
p2 �m2

i

�
� ifT

ij

�
p2
�✓

⌘µ⌫ � pµp⌫
p2

◆
� ifV L

ij

�
p2
� pµp⌫

p2
, (15)

6

The renormalization conditions should be chosen to ease as much as possible the problem at
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value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.
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The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent flavors
in the wave function renormalizations. The renormalized fields are therefore mass eigenstates. If
the two fermion flavors are massless, the first two conditions are trivially satisfied and therefore
are replaced by <̃fL
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Majorana fermions  , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion fields are related by
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Renormalization conditions
Zero momentum scheme available for the gauge couplings
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the <̃ [19].

Finally, all the external parameters but the masses are renormalized in the MS scheme by
default. Namely, only the pole in
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where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is fixed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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where p1, p2 and k are the incoming momenta of the two fermions and the vector, the h functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant and T a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The first two terms are due to the renormalization of the tree-level vertex. The last pieces
of the first two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
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k = �p1 � p2 = 0 then read

�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V + hV (0) + hS (0) = 0 (19)

1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V + hA (0) = 0. (20)

Gauge invariance implies that the second is always satisfied as well as

1

2
�ZR

FF +
1

2
�ZL

FF + hV (0) + hS (0) +
g0A
2g

�ZV 0V = 0. (21)

Consequently, the renormalization of the gauge coupling is fixed by

�g

g
+

1

2
�ZV V +

g0V
2g

�ZV 0V +
g0A
2g

�ZV 0V = 0. (22)

7

the corresponding renormalization conditions are

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fT
ii

�
p2
�� ���

p2=m2
i

= 0. (16)

The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the <̃ [19].

Finally, all the external parameters but the masses are renormalized in the MS scheme by
default. Namely, only the pole in

1

✏
⌘ 1

✏
� � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is fixed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as

�µ
FFV (p1, p2) = igT a�f1,f2

"
�µ

✓
�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V

◆

+�µ�5

✓
1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V

◆

+

✓
�µhV

�
k2

�
+ �µ�5h

A
�
k2

�
+

(p1 � p2)µ

2m
hS

�
k2

�
+

kµ
2m

hP
�
k2

�◆
#
,(18)

where p1, p2 and k are the incoming momenta of the two fermions and the vector, the h functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant and T a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The first two terms are due to the renormalization of the tree-level vertex. The last pieces
of the first two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = �p1 � p2 = 0 then read

�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V + hV (0) + hS (0) = 0 (19)

1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V + hA (0) = 0. (20)

Gauge invariance implies that the second is always satisfied as well as

1

2
�ZR

FF +
1

2
�ZL

FF + hV (0) + hS (0) +
g0A
2g

�ZV 0V = 0. (21)

Consequently, the renormalization of the gauge coupling is fixed by

�g

g
+

1

2
�ZV V +

g0V
2g

�ZV 0V +
g0A
2g

�ZV 0V = 0. (22)

7

the corresponding renormalization conditions are

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fT
ii

�
p2
�� ���

p2=m2
i

= 0. (16)

The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the <̃ [19].

Finally, all the external parameters but the masses are renormalized in the MS scheme by
default. Namely, only the pole in

1

✏
⌘ 1

✏
� � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is fixed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as

�µ
FFV (p1, p2) = igT a�f1,f2

"
�µ

✓
�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V

◆

+�µ�5

✓
1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V

◆

+

✓
�µhV

�
k2

�
+ �µ�5h

A
�
k2

�
+

(p1 � p2)µ

2m
hS

�
k2

�
+

kµ
2m

hP
�
k2

�◆
#
,(18)

where p1, p2 and k are the incoming momenta of the two fermions and the vector, the h functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant and T a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The first two terms are due to the renormalization of the tree-level vertex. The last pieces
of the first two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = �p1 � p2 = 0 then read

�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V + hV (0) + hS (0) = 0 (19)

1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V + hA (0) = 0. (20)

Gauge invariance implies that the second is always satisfied as well as

1

2
�ZR

FF +
1

2
�ZL

FF + hV (0) + hS (0) +
g0A
2g

�ZV 0V = 0. (21)

Consequently, the renormalization of the gauge coupling is fixed by

�g

g
+

1

2
�ZV V +

g0V
2g

�ZV 0V +
g0A
2g

�ZV 0V = 0. (22)

7

By gauge invariance
Only from 
two-point 
functions



C. Degrande

Renormalization conditions
Zero momentum scheme available for the gauge couplings

the corresponding renormalization conditions are

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fT
ii

�
p2
�� ���

p2=m2
i

= 0. (16)

The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the <̃ [19].

Finally, all the external parameters but the masses are renormalized in the MS scheme by
default. Namely, only the pole in

1

✏
⌘ 1

✏
� � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is fixed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as

�µ
FFV (p1, p2) = igT a�f1,f2

"
�µ

✓
�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V

◆

+�µ�5

✓
1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V

◆

+

✓
�µhV

�
k2

�
+ �µ�5h

A
�
k2

�
+

(p1 � p2)µ

2m
hS

�
k2

�
+

kµ
2m

hP
�
k2

�◆
#
,(18)

where p1, p2 and k are the incoming momenta of the two fermions and the vector, the h functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant and T a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The first two terms are due to the renormalization of the tree-level vertex. The last pieces
of the first two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = �p1 � p2 = 0 then read

�g

g
+

1

2
�ZV V +

1

2
�ZR

FF +
1

2
�ZL

FF +
g0V
2g

�ZV 0V + hV (0) + hS (0) = 0 (19)

1

2
�ZR

FF � 1

2
�ZL

FF +
g0A
2g

�ZV 0V + hA (0) = 0. (20)

Gauge invariance implies that the second is always satisfied as well as

1

2
�ZR

FF +
1

2
�ZL

FF + hV (0) + hS (0) +
g0A
2g

�ZV 0V = 0. (21)

Consequently, the renormalization of the gauge coupling is fixed by

�g

g
+

1

2
�ZV V +

g0V
2g

�ZV 0V +
g0A
2g

�ZV 0V = 0. (22)

7

the corresponding renormalization conditions are

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fT
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fT
ii

�
p2
�� ���

p2=m2
i

= 0. (16)
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EFT at NLO (QCD)
B. Grzadkowski et al, JHEP 1010 (2010) 085

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3
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of independent operators Q(5)
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of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.
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Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)
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C. Degrande

EFT at NLO
(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.
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qu (q̄pγµqr)(ūsγµut)
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Q(1)
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qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
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lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr
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(qγms )TClnt

]

Q(3)
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k
sσ

µνut) Qduu εαβγ
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(dαp )

TCuβr
] [
(uγs )

TCet
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Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.
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EFT at NLO
=?         -1         or        +1

Evanescent operators:
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ū�µP

R

TAu
� �

t̄�
µ

P
R

TAt
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
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compute eq. (8) in 4-dimension (as in MadLoop), we would get:
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Comparing this with eq. (10), the R2 can be identified:
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This R2 originates from the way in which E is defined.
The diagram on the right, M2, gives the same contribution (for the divergent

part), so in the end both UV and R2 are doubled:
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2 Diagrams 3,4

Figure 2:
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[ū(p3)�

⌫

(/p3 � /q +m3)

(p3 � q)2 �m2
3

�µP
R

v(p4)]

[v̄(p2)�µPR

(/p1 � /q +m1)

(p1 � q)2 �m2
1

�
⌫

u(p1)]
1

q2
(7)

1

Extra R2 (gauge invariant)	
Change the UV matching

In MG5_aMC
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EFT at NLO

• UV counterterms : 	

• Basis reduction needed for the anomalous 
matrix (By Liam Moore)	

• Check (	R. Alonso, E. E. Jenkins, A. V. Manohar, 
M. Trott, JHEP 1404 (2014) 159)	

• MSbar : 1/𝜺 from the amplitudes not from the 
renomalization	

• Running (UFO 2.0)
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R2 : Validation

• tested* on the SM (QCD:P. Draggiotis et al.
+QED:M.V. Garzelli et al) 	

• tested* on MSSM (QCD:H.-S. Shao, Y.-J. 
Zhang) : test the Majorana

*Analytic comparison of the expressions
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UV Validation

!

• SM QCD : tested* (W. Beenakker, S. Dittmaier, 
M. Kramer, B. Plumper)	

• SM EW : tested* (expressions given by H.-S. 
Shao from A. Denner)	

!

*Analytic comparison of the expressions
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Tests in event generators
• aMC@NLO 	

• The SM QCD has been tested by V. Hirschi 
(Comparison with the built-in version)	

• SM EW (MZ scheme): comparison to published 
results for ME by H.-S. Shao and V. Hirschi	

• Various BSM	

• gauge invariance	

• pole cancelation
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SM QCD tests
=== Finite ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d d~ > w+ w- g      -1.2565695610e+01   -1.2565705416e+01   -1.2565696276e+01   3.9018817097e-07    Pass	!

=== Born ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      1.8518318521e-06    1.8518318521e-06    1.8518318521e-06    8.0617231411e-15    Pass	!
=== Single pole ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d d~ > w+ w- g      -1.9397426502e+01   -1.9397426502e+01   -1.9397426504e+01   5.5894073017e-11    Pass	!

=== Double pole ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      -5.6666666667e+00   -5.6666666667e+00   -5.6666666667e+00   3.0015206007e-14    Pass	!
=== Summary ===	

 1/1 passed, 0/1 failed=== Finite ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > a g g        -5.3971186943e+01   -5.3971193753e+01   -5.3971189940e+01   6.3091071914e-08    Pass	!
=== Born ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > a g g        6.4168774056e-05    6.4168764370e-05    6.4168764370e-05    7.5467680882e-08    Pass	!

=== Single pole ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > a g g        -3.7439549398e+01   -3.7439549398e+01   -3.7439549397e+01   6.8122965983e-12    Pass	!
=== Double pole ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > a g g        -8.6666666667e+00   -8.6666666667e+00   -8.6666666667e+00   2.2443585452e-14    Pass	!

=== Summary ===	
 1/1 passed, 0/1 failed=== Finite ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > z g g        -5.3769573669e+01   -5.3769573347e+01   -5.3769566412e+01   6.7475496780e-08    Pass	
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d d~ > w+ w- g      -1.2565695610e+01   -1.2565705416e+01   -1.2565696276e+01   3.9018817097e-07    Pass	
!

=== Born ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      1.8518318521e-06    1.8518318521e-06    1.8518318521e-06    8.0617231411e-15    Pass	
!

=== Single pole ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      -1.9397426502e+01   -1.9397426502e+01   -1.9397426504e+01   5.5894073017e-11    Pass	
!

=== Double pole ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      -5.6666666667e+00   -5.6666666667e+00   -5.6666666667e+00   3.0015206007e-14    Pass
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=== Born ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > z g g        3.1531233900e-04    3.1531235770e-04    3.1531235770e-04    2.9654886777e-08    Pass	!
=== Single pole ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > z g g        -3.7464897007e+01   -3.7464897007e+01   -3.7464897007e+01   4.2333025503e-12    Pass	!

=== Double pole ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > z g g        -8.6666666667e+00   -8.6666666667e+00   -8.6666666667e+00   2.1316282073e-14    Pass	!
=== Summary ===	

 1/1 passed, 0/1 failed=== Finite ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > z z g        -5.9990384275e+00   -5.9990511729e+00   -5.9990379587e+00   1.1013604745e-06    Pass	!
=== Born ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > z z g        2.2616997126e-06    2.2617000449e-06    2.2617000449e-06    7.3450366526e-08    Pass	!

=== Single pole ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

d~ d > z z g        -1.5469587040e+01   -1.5469587040e+01   -1.5469587040e+01   1.5226666708e-11    Pass	!
=== Double pole ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
d~ d > z z g        -5.6666666667e+00   -5.6666666667e+00   -5.6666666667e+00   2.6645352591e-15    Pass	!

=== Summary ===	
 1/1 passed, 0/1 failed=== Finite ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
g g > h t t~        2.9740187004e+01    2.9740187005e+01    2.9740187036e+01    5.3265970697e-10    Pass	!

SM QCD tests
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=== Born ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

g g > h t t~        1.1079653971e-07    1.1079653974e-07    1.1079653974e-07    1.3190849004e-10    Pass	!
=== Single pole ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
g g > h t t~        -7.0825709000e+00   -7.0825709000e+00   -7.0825709000e+00   5.0901237085e-13    Pass	!

=== Double pole ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

g g > h t t~        -6.0000000000e+00   -6.0000000000e+00   -6.0000000000e+00   1.7023419711e-15    Pass	!
=== Summary ===	

 1/1 passed, 0/1 failed=== Finite ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

g g > z t t~        3.6409017466e+01    3.6409021125e+01    3.6409021117e+01    5.0242920154e-08    Pass	!
=== Born ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
g g > z t t~        7.0723041711e-07    7.0723046101e-07    7.0723046101e-07    3.1039274206e-08    Pass	!

=== Single pole ===	
Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	

g g > z t t~        -7.1948086812e+00   -7.1948086773e+00   -7.1948086773e+00   2.7349789963e-10    Pass	!
=== Double pole ===	

Process             Stored MadLoop v4   ML5 opt             ML5 default         Relative diff.      Result	
g g > z t t~        -6.0000000000e+00   -6.0000000000e+00   -6.0000000000e+00   2.5165055225e-15    Pass	!

=== Summary ===	
 1/1 passed, 0/1 failed=== Finite ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d d~ > w+ w- g      -1.2565695610e+01   -1.2565705416e+01   -1.2565696276e+01   3.9018817097e-07    Pass	!

SM QCD tests
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=== Born ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      1.8518318521e-06    1.8518318521e-06    1.8518318521e-06    8.0617231411e-15    Pass	!
=== Single pole ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d d~ > w+ w- g      -1.9397426502e+01   -1.9397426502e+01   -1.9397426504e+01   5.5894073017e-11    Pass	!

=== Double pole ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d d~ > w+ w- g      -5.6666666667e+00   -5.6666666667e+00   -5.6666666667e+00   3.0015206007e-14    Pass	!
=== Summary ===	

 1/1 passed, 0/1 failed=== Finite ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d~ d > a g g        -1.1504816412e+01   -1.1504816557e+01   -1.1504815497e+01   4.6089385415e-08    Pass	!
=== Born ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d~ d > a g g        2.3138920858e-06    2.3138920858e-06    2.3138920858e-06    4.3012538015e-15    Pass	!

=== Single pole ===	
Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	

d~ d > a g g        -2.8637049838e+01   -2.8637049838e+01   -2.8637049838e+01   1.5718407645e-13    Pass	!
=== Double pole ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d~ d > a g g        -8.6666666667e+00   -8.6666666667e+00   -8.6666666667e+00   1.7421961310e-15    Pass	!

=== Summary ===	
 1/1 passed, 0/1 failed=== Finite ===	

Process             Stored ML5 opt      ML5 opt             ML5 default         Relative diff.      Result	
d~ d > z g g        -1.0306105482e+01   -1.0306105654e+01   -1.0306102645e+01   1.4600800434e-07    Pass	!

=1/3 tests+2/3

SM QCD tests
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Test EW
== a a > t t~ ['QED'] == 
== a a > t t~ a ['QED'] == 
== a a > w+ w- ['QED'] == 
== a b > t w- ['QED'] == 
== d~ d > w+ w- ['QCD'] == 
== d~ d > w+ w- ['QED'] == 
== d~ d > z z ['QCD'] == 
== d~ d > z z ['QED'] == 
== e+ e- > t t~ a ['QED'] == 
== e+ e- > t t~ g ['QED'] == 
== g b > t w- ['QED'] == 
== g g > h h ['QCD'] == 
== g g > t t~ ['QED'] == 
== g g > t t~ g ['QED'] == 
== g g > t t~ h ['QCD'] == 
== g g > t t~ h ['QED'] == 
== h h > h h ['QED'] == 
== h h > h h h ['QED'] == 
== t t~ > w+ w- ['QED'] ==

== u b > t d ['QED'] ==  
== u d~ > t b~ ['QED'] == 
== u g > t d b~ ['QED'] == 
== u u~ > a a ['QED'] == 
== u u~ > e+ e- ['QED'] == 
== u u~ > g a ['QCD QED'] == 
== u u~ > u u~ ['QCD QED'] == 
== u u~ > u u~ a ['QCD QED'] == 
== u u~ > u u~ g ['QCD QED'] == 
== u u~ > w+ w- ['QED'] == 
== u u~ > z a ['QED'] == 
== u u~ > z z ['QED'] == 
== u~ d > w- z ['QCD'] == 
== u~ d > w- z ['QED'] == 
== u~ u > w+ w- ['QCD'] == 
== u~ u > w+ w- ['QED'] == 
== u~ u > z z ['QCD'] == 
== u~ u > z z ['QED'] == 
== ve ve~ > e+ e- ['QED'] == 
== w+ w- > h h ['QED'] ==

Massive and massless b
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Future development

!

• UFO@NLO in Gosam (N. Greiner)	

• DRED (asked by Gosam)	

• UFO 2.0
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Plan

• Framework : From FeynRules to 
Madgraph5_aMC@NLO	

• Examples : 	

• Charged Higgs production	

• Spin 2	

• Top FCNC	

• Final remarks
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Figure 1: Leading-order diagrams for heavy charged Higgs and top associated production, in the
4FS (left and centre) and 5FS (right).

has also published a preliminary note [7] on a direct search for a heavy charged Higgs which decays
in both the H+ ! tb̄ and the H+ ! ⌧+⌫⌧ channels.

In this work, we consider heavy charged Higgs boson production at hadron colliders and leave
the intermediate-mass range to future studies [8]. In particular, we focus only on the production of
a negatively charged scalar since the results are identical for a positively charged scalar. As for any
process involving bottom quarks at the matrix-element level, two viable schemes exist to compute
the production cross section of a heavy charged Higgs boson. These are usually dubbed as four-
and five-flavour schemes. In the four-flavour scheme (4FS) the bottom quark mass is considered as
a hard scale of the process. Therefore, bottom quarks do not contribute to the proton wavefunction
and can only be generated as massive final states at the level of the short-distance cross section,
entailing that b-tagged observables receive contributions starting at leading order (LO). In practice,
the theory which is used in such a calculation is an e↵ective theory with four light quarks, where
the massive bottom quark is decoupled and enters neither the renormalisation group equation for
the running of the strong coupling constant nor the evolution of the parton distribution functions
(PDFs). The LO partonic processes in the case at hand are

gg ! H�b̄t and qq̄ ! H�b̄t . (1)

Next-to-leading order (NLO) calculations for the total cross sections in this scheme have been
presented in Refs. [9, 10].

Conversely, in five-flavour scheme (5FS), the bottom quark mass is considered to be much
smaller than the hard scales involved in the process. The simplest definition of the 5FS—that
suits particularly well perturbative computations—is to strictly set mb = 0 in the short-distance
cross section. Consequently, bottom quarks are treated on the same footing as all other massless
partons. The only di↵erence is the presence of a threshold in the bottom-quark PDF and the initial
condition of the bottom quark evolution being of perturbative nature. The use of b-PDFs comes
along with the approximation that, at leading order, the massless b quark has a small transverse
momentum. In this scheme, the leading logarithms associated to the initial state collinear splitting
are resummed to all orders in perturbation theory by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the bottom densities. The LO partonic process is given by

gb ! H�t . (2)

Next-to-leading order predictions for heavy charged Higgs boson production in the 5FS, possibly
including the matching to parton-shower Monte Carlos, were studied in Refs. [11–17]. Electroweak
corrections [18,19] and soft gluon resummation e↵ects [15,20,21] have also been included in recent
works.

The leading-order diagrams in the 4FS and 5FS are displayed in Fig. 1. The comparison between
the two schemes at the level of total cross section has been performed by several groups, see e.g.
Ref. [10] and references therein. In a more recent study [22] a thorough combination of all sources
of theoretical uncertainties is performed, state-of-the-art PDF sets are used, the new scale-setting

3

Example 1: Charged Higgs production
C. D., M.Ubiali, M.Wiesemann and M.Zaro,  JHEP 1510 (2015) 145

• Motivations :	

• needed for the LHC current and future runs 	

• First searches in the high mass region	

• Threshold region (With R. Frederix)	

• 4F NLO fully differential matched with parton 
shower 	

!

!

• Shape comparison with the 5F
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has also published a preliminary note [7] on a direct search for a heavy charged Higgs which decays
in both the H+ ! tb̄ and the H+ ! ⌧+⌫⌧ channels.

In this work, we consider heavy charged Higgs boson production at hadron colliders and leave
the intermediate-mass range to future studies [8]. In particular, we focus only on the production of
a negatively charged scalar since the results are identical for a positively charged scalar. As for any
process involving bottom quarks at the matrix-element level, two viable schemes exist to compute
the production cross section of a heavy charged Higgs boson. These are usually dubbed as four-
and five-flavour schemes. In the four-flavour scheme (4FS) the bottom quark mass is considered as
a hard scale of the process. Therefore, bottom quarks do not contribute to the proton wavefunction
and can only be generated as massive final states at the level of the short-distance cross section,
entailing that b-tagged observables receive contributions starting at leading order (LO). In practice,
the theory which is used in such a calculation is an e↵ective theory with four light quarks, where
the massive bottom quark is decoupled and enters neither the renormalisation group equation for
the running of the strong coupling constant nor the evolution of the parton distribution functions
(PDFs). The LO partonic processes in the case at hand are

gg ! H�b̄t and qq̄ ! H�b̄t . (1)

Next-to-leading order (NLO) calculations for the total cross sections in this scheme have been
presented in Refs. [9, 10].

Conversely, in five-flavour scheme (5FS), the bottom quark mass is considered to be much
smaller than the hard scales involved in the process. The simplest definition of the 5FS—that
suits particularly well perturbative computations—is to strictly set mb = 0 in the short-distance
cross section. Consequently, bottom quarks are treated on the same footing as all other massless
partons. The only di↵erence is the presence of a threshold in the bottom-quark PDF and the initial
condition of the bottom quark evolution being of perturbative nature. The use of b-PDFs comes
along with the approximation that, at leading order, the massless b quark has a small transverse
momentum. In this scheme, the leading logarithms associated to the initial state collinear splitting
are resummed to all orders in perturbation theory by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the bottom densities. The LO partonic process is given by

gb ! H�t . (2)

Next-to-leading order predictions for heavy charged Higgs boson production in the 5FS, possibly
including the matching to parton-shower Monte Carlos, were studied in Refs. [11–17]. Electroweak
corrections [18,19] and soft gluon resummation e↵ects [15,20,21] have also been included in recent
works.

The leading-order diagrams in the 4FS and 5FS are displayed in Fig. 1. The comparison between
the two schemes at the level of total cross section has been performed by several groups, see e.g.
Ref. [10] and references therein. In a more recent study [22] a thorough combination of all sources
of theoretical uncertainties is performed, state-of-the-art PDF sets are used, the new scale-setting
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has also published a preliminary note [7] on a direct search for a heavy charged Higgs which decays
in both the H+ ! tb̄ and the H+ ! ⌧+⌫⌧ channels.

In this work, we consider heavy charged Higgs boson production at hadron colliders and leave
the intermediate-mass range to future studies [8]. In particular, we focus only on the production of
a negatively charged scalar since the results are identical for a positively charged scalar. As for any
process involving bottom quarks at the matrix-element level, two viable schemes exist to compute
the production cross section of a heavy charged Higgs boson. These are usually dubbed as four-
and five-flavour schemes. In the four-flavour scheme (4FS) the bottom quark mass is considered as
a hard scale of the process. Therefore, bottom quarks do not contribute to the proton wavefunction
and can only be generated as massive final states at the level of the short-distance cross section,
entailing that b-tagged observables receive contributions starting at leading order (LO). In practice,
the theory which is used in such a calculation is an e↵ective theory with four light quarks, where
the massive bottom quark is decoupled and enters neither the renormalisation group equation for
the running of the strong coupling constant nor the evolution of the parton distribution functions
(PDFs). The LO partonic processes in the case at hand are

gg ! H�b̄t and qq̄ ! H�b̄t . (1)

Next-to-leading order (NLO) calculations for the total cross sections in this scheme have been
presented in Refs. [9, 10].

Conversely, in five-flavour scheme (5FS), the bottom quark mass is considered to be much
smaller than the hard scales involved in the process. The simplest definition of the 5FS—that
suits particularly well perturbative computations—is to strictly set mb = 0 in the short-distance
cross section. Consequently, bottom quarks are treated on the same footing as all other massless
partons. The only di↵erence is the presence of a threshold in the bottom-quark PDF and the initial
condition of the bottom quark evolution being of perturbative nature. The use of b-PDFs comes
along with the approximation that, at leading order, the massless b quark has a small transverse
momentum. In this scheme, the leading logarithms associated to the initial state collinear splitting
are resummed to all orders in perturbation theory by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the bottom densities. The LO partonic process is given by

gb ! H�t . (2)

Next-to-leading order predictions for heavy charged Higgs boson production in the 5FS, possibly
including the matching to parton-shower Monte Carlos, were studied in Refs. [11–17]. Electroweak
corrections [18,19] and soft gluon resummation e↵ects [15,20,21] have also been included in recent
works.

The leading-order diagrams in the 4FS and 5FS are displayed in Fig. 1. The comparison between
the two schemes at the level of total cross section has been performed by several groups, see e.g.
Ref. [10] and references therein. In a more recent study [22] a thorough combination of all sources
of theoretical uncertainties is performed, state-of-the-art PDF sets are used, the new scale-setting

3

Example 1: Charged Higgs production
5 Flavours	

• mb=0 (but mby>0)	

• In the PDF	

• In the running of αs	

• Handle collinear 
logarithms	

• αs

4 Flavours	

• mb>0	

• Not in the PDF	

• Not in the running of αs	

• Contribution to b 
observable at LO	

• αs2
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Example 1: Charged Higgs production

Validation : -Comparison with S. Dittmaier, M. Kramer, M. Spira 	
	 	 	 	 and M. Walser,  PRD 83 (2011) 055005	 	
	 	 	    -Recover ttH

Input : -FR model	
          -running of the b yukawa mass

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].
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that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
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This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
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written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
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Figure 2: Transverse momentum of the H�b̄t system for mH� = 200GeV in the 4FS at fNLO
(green dotted-solid for the y2b term, orange dotted-solid for the y2t term), and at NLO+PS with F=
1 (green dots for the y2b term, orange dots for the y2t term) and F= 4 (green solid for the y2b term,
orange solid for the y2t term). We show predictions matched with Pythia8 (left) and Herwig++
(right). The insets show the ratio of the curves in the main frame over the fNLO prediction, for
both the y2b and the y2t terms.

order ones by choosing a reduced shower scale corresponding to F = 4 (solid curves).7 Indeed,
such a choice brings µ

sh

much closer to the value of the renormalisation and factorisation scales.
We have also checked that the agreement among Pythia8 and Herwig++ improves (although
often only marginally) when di↵erential observables in the 4FS are computed with F = 4.

In conclusion, although for this process we do not reproduce all results of Ref. [28] with the
same significance, we still find su�cient evidence that F = 4 is favourable in many respects and
make it our default choice. In Sect. 3.3, we shall further study the impact of this choice when
comparing the 4FS and 5FS results: by setting F = 4 an improved agreement between the two
schemes at the level of shapes is observed.

3.2 Four-flavour scheme results

We now turn to our phenomenological results for charged Higgs boson production. Let us first
consider state-of-the-art 4FS predictions, which, as will be shown, constitute the most reliable
di↵erential results for observables exclusive in the degrees of freedom of final-state bottom quarks.
We split this section into two parts: in Sect. 3.2.1 we limit our study to the dominant y2b and y2t
contributions, while the yb yt contribution is considered in Sect. 3.2.2.
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the distributions on the shower scale µ
sh

, when varied by a factor in the range [1/
p
2,
p
2], is

rather mild and significantly smaller than uncertainties associated with the renormalisation and
factorisation scales; we therefore refrain from including uncertainties associated with µ

sh

in what
follows. Furthermore, we will not discuss any PDF systematics.3

Jets are reconstructed via the anti-kT algorithm [59], as implemented in FastJet [60,61], with
a distance parameter �R = 0.4 and subject to the conditions

pT (j) � 25GeV, |⌘(j)|  2.5. (11)

For fixed-order computations jets are clustered from partonic final states, while in simulations
matched to parton showers jets are made up of hadrons; b jets are defined to contain at least one
b quark (at fixed order) or B hadron (in matched simulations).

In our simulations we keep the charged Higgs boson stable, while we decay the top quark
leptonically (although the leptons from the decay will not a↵ect any observable we consider) in
order to keep as much control as possible on the origin of QCD radiation. The task to decay the
top quark is performed by the parton shower for (N)LO+PS runs, while at fixed order we simulate
the decay t ! bW in an isotropic way (in the t rest frame) at the analysis level.4 No simulation of
the underlying event is performed by the parton shower.

Let us conclude this section by addressing one further point, which is crucial when processes
with final-state b quarks are matched to parton showers: the choice of the shower starting scale µ

sh

.
Such processes are known to prefer much lower values of the renormalisation and factorisation scales
than the one naively identified as the hard scale of the process (ŝ). In fact, the shower starting scale
and the factorisation scale emerge both from the same concept, namely the separation of soft and
hard physics. Furthermore, it has been argued in Ref. [28] for the associated production of a neutral
Higgs boson with bottom quarks that the shower starting scale (limiting the hardest emission that
the shower can generate) should be set at similar values, i. e. well below ŝ. Following the arguments
made in Ref. [28], we check their validity in the case of charged Higgs boson production. We shall
stress at this point that the following discussion applies both to our reference scenarios with
mH� = 200GeV and mH� = 600GeV, although we refrain from showing explicit results for the
latter.

MadGraph5 aMC@NLO assigns a dynamical shower scale chosen from a distribution in the
range5

0.1

F
ŝ  µ

sh

 1

F
ŝ, (12)

where F is a parameter that drives the bounds of the distribution, and whose default value is
F = 1. With such a default setting the e↵ective value of µ

sh

, namely the maximum of the µ
sh

distribution (which for simplicity we will refer to as just µ
sh

in the following), is indeed much
larger than µF,R. Furthermore, considering the transverse momentum distribution of the Born-
level “system” (pT (sys)),6 which is maximally sensitive to the interplay between the fixed-order
prediction and the shower, the NLO+PS distribution (in particular in the 4FS) does not match
the fixed-order NLO (fNLO) one at large pT for F = 1. This can be deduced from Fig. 2, when
comparing the crosses (NLO+PS for F = 1) to the solid curves overlayed with points (fNLO). On
the contrary, we observe a clearly improved high-pT matching of the NLO+PS results to the fixed-

3Note that scale variations due to µF and µR as well as PDF uncertainties are computed at no extra CPU cost
using the reweighting procedure of Ref. [56].

4 Such an approach neglects spin-correlation in the decay of the top quark. However, within the Mad-
Graph5 aMC@NLO framework, spin correlation can be included in (N)LO+PS runs by decaying the top quark
with MadSpin [62].

5See Ref. [32] for further details.
6Note that the Born-level system is unambiguously defined only in a fixed-order calculation, being in our case

the charged Higgs accompanied by the final state top and bottom quark. At NLO+PS we define it to include the
hardest B hadron (instead of the bottom quark), which does not originate from the top decay; in this case, MC-truth
is used.
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3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.
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�(mH� = 200GeV) [fb]

NLO LO
y2b y2t y2b y2t

Inclusive 50.40+17.8%
�18.6% 42.43+12.4%

�13.1% 42.12+52.2%
�31.9% 28.68+36.3%

�24.7%

� 1jb

F.O. 45.47+17.5%
�18.4% 38.31+12.2%

�13.0% 38.26+51.9%
�31.8% 26.09+36.1%

�24.6%

Pythia8 43.44+17.4%
�18.4% 36.67+12.0%

�13.0% 36.81+52.0%
�31.8% 25.09+36.1%

�24.7%

Herwig++ 42.64 36.04 36.08 24.61

� 2jb

F.O. 11.55+10.9%
�15.4% 9.76+6.5%

�10.0% 11.22+50.4%
�31.2% 7.79+35.0%

�24.1%

Pythia8 12.55+15.3%
�17.4% 10.67+10.4%

�12.1% 11.73+51.2%
�31.5% 8.12+35.6%

�24.4%

Herwig++ 11.03 9.33 10.09 7.00

�(mH� = 600GeV) [fb]
NLO LO

y2b y2t y2b y2t

Inclusive 2.400+20.3%
�20.1% 2.117+13.1%

�14.2% 1.794+54.9%
�33.0% 1.339+40.1%

�26.5%

� 1jb

F.O. 2.187+19.9%
�19.9% 1.925+12.6%

�14.0% 1.649+54.7%
�32.9% 1.232+39.9%

�26.5%

Pythia8 2.115+19.9%
�19.9% 1.865+12.5%

�14.0% 1.601+54.8%
�32.9% 1.197+40.0%

�26.5%

Herwig++ 2.077 1.836 1.570 1.175

� 2jb

F.O. 0.630+12.6%
�17.0% 0.548+5.9%

�10.8% 0.548+53.8%
�32.6% 0.413+39.2%

�26.2%

Pythia8 0.697+16.7%
�18.6% 0.611+9.6%

�12.6% 0.588+54.3%
�32.8% 0.443+39.6%

�26.3%

Herwig++ 0.602 0.532 0.498 0.376

Table 1: 4FS predictions for total rates (in fb) for tan� = 8.

3.2.1 y2b and y2t contributions at NLO+PS

We begin our analysis by studying total rates for the production of charged Higgs bosons with
a mass of 200GeV and 600GeV in Table 1. We consider three possibilities: the fully inclusive
case, the case in which we require at least one b jet, and the one in which two or more b jets are
tagged. All results are given at both LO and NLO accuracy. The cross sections in which one or
two b jets are required depend on the approximation and Monte Carlo under consideration. We
thus report separately results obtained at fixed order, with Pythia8 and with Herwig++. Any
quoted uncertainty is due to scale variation, evaluated as detailed in Sect. 3.1; they are indicated
only at fixed order and for results matched with Pythia8, since they show little dependence on
the specific Monte Carlo. Results for y2b and y2t terms are presented separately. Let us summarize
the conclusions to be drawn from Table 1 as follows:

• The scale uncertainty of NLO predictions is substantially smaller than that of the LO ones;
at NLO the scale uncertainty is larger for the y2b than for the y2t contribution (⇠ 15-20% and
⇠ 10-15%, respectively), due to the di↵erent renormalisation schemes used for the bottom
and top Yukawa couplings.

• Because of our default choice of tan� = 8, y2b and y2t predictions are of similar size at NLO
(only ⇠ 15% di↵erent); the di↵erence is larger at LO (⇠ 30%). As a consequence, the K-
factors are generally di↵erent between the y2b and y2t terms; for mH� = 200GeV, the inclusive
y2b K-factor is close to 1.2, while for the y2t term the NLO corrections have a larger impact,

7Our focus here is on the 4FS prediction. However, similar conclusions, if less stringent, can be drawn from the
corresponding plots in the 5FS.
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3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.

7
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Figure 4: Same as the upper panel of Fig. 3, but for the transverse momentum of hardest (left
panel) and second-hardest (right panel) b jet.

comparable features: in all cases, the tail of the spectra is driven by the order relevant to the
simulation and NLO corrections slightly soften the spectra. In other words, the fixed-order results
agree rather well with the corresponding Pythia8 ones in the tail. On the other hand, close to
threshold (pT = 25GeV), where resummation e↵ects are enhanced, non-showered and showered
results exhibit sizeable di↵erences, in particular for the hardest b jet.

Turning now to somewhat related observables in Fig. 5—the transverse momentum distributions
of the hardest and second-hardest B hadron—, one may expect rather similar features to the b-jet
transverse momentum spectra. On the contrary, their pattern is actually very di↵erent; the salient
feature being that showered results are vastly softer than the fixed-order ones and a substantial
shape distortion due to the matching with parton showers is observed. In fact, even the peak
of the pT (B1

) distribution is moved by ⇠ 25GeV towards the left by the shower. However, one
should bear in mind that we compare bottom quarks at parton level for the f(N)LO predictions
with B hadrons at (N)LO+PS. The observed di↵erences unavoidably lead to the conclusion that
fragmentation e↵ects become significant for such exclusive observables. Otherwise, the pattern of
the Pythia8 results is very much reminiscent of b-jet spectra, displaying a slightly harder LO+PS
shape than at NLO+PS. Generally speaking, the relative behaviour of the y2b and y2t curves is
pretty much alike, including the peculiar increase of the f(N)LO cross section towards vanishing
pT (B2

). Again, we refrain from showing explicit results for amH� = 600GeV charged Higgs boson,
since the pattern of the various curves turns out to be very similar to the mH� = 200GeV case;
the only di↵erence to be pointed out is a slightly reduced gap between showered and fixed-order
results for mH� = 600GeV.

We investigated a vast number of di↵erential observables, the majority of which follows the
same pattern as illustrated in Figs. 3 and 4: the NLO corrections are rather flat and lie within
the LO uncertainty bands, shower e↵ects are moderate and become more substantial the more
exclusive the observable is with respect to the bottom-quark degrees of freedom. Based on our
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Figure 8: Relative contribution of the ybyt term at LO (dashed) and NLO (solid) in the 4FS, with
respect to the total (N)LO cross section, as a function of tan�. The two cases mH� = 200GeV
(green) and mH� = 600GeV (blue) are shown.

The results of Fig. 7 analysed so far are for mH� = 200GeV. Since these observables are
particularly relevant for experimental analyses based on jet and b-jet categories, let us discuss
explicitly the results for a charged Higgs mass of mH� = 600GeV, which are displayed in the lower
plots of Fig. 7. While for jet multiplicities the general features are not so di↵erent, some specific
features are. Apart from a larger Higgs mass changing the LO normalisation, the distribution
of events at LO appears shifted towards low multiplicities as compared to LO+PS, without any
overlap of the corresponding uncertainties in the first two bins. However, given our findings for
the lower Higgs mass case, this is expected: the shower shifts events from lower towards higher
jet multiplicities; this is enhanced for mH� = 600GeV due to a generally increased hardness of
the process. Indeed, the two-jet bin has the largest rate, and the three- and four-jet bins are
less suppressed than in the lighter Higgs case. NLO corrections slightly improve the agreement
of showered and fixed-order results, albeit fNLO and NLO+PS still fall outside the respective
uncertainties in the zero- and one-jet bins.

In the case of b jets, on the other hand, the features of the relative curves reflect those discussed
for the lighter Higgs and no further comments are needed.

3.2.2 The ybyt contribution

As we mentioned before, in the 5FS the NLO cross section receives contributions either proportional
to y2b or to y2t . No ybyt term appears, given that it would come from the interference of left-handed
with right-handed massless bottom quarks. If in turn b quarks are massive, as in the 4FS, the ybyt
term does not vanish any longer, and it is proportional to m2

b/Q
2, where Q is some hard scale of

the process. So far, we have limited our 4FS analysis to the y2b and y2t contributions, assuming the
ybyt one to be suppressed. In this section, we show that this is indeed the case.

To this purpose, we consider the total cross section for charged Higgs production in the 4FS at
LO and NLO, and plot the relative contribution ��ybyt/�all

as a function of tan� in Fig. 8, with
�
all

being the sum of all terms. The results are shown for mH� = 200, 600GeV. The minus sign
takes into account the fact that the ybyt term is negative. We stress that the ybyt contribution is
independent of tan�. As can be inferred from the plots, the relative size of the ybyt term is below
5% for mH� = 200GeV, and 0.5% for mH� = 600GeV. The relative contribution to the cross
section proportional to ybyt is maximal when the y2b and y2t terms are equal, i. e. when

y2b tan�
2 = y2t /tan�

2 ) tan� = 7.27(7.67), (13)
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Figure 9: Di↵erential comparisons at the between the ybyt term and the y2b , y
2

t ones, for mH� =
200GeV. The transverse momentum of the top quark (top left), of the Higgs boson (top right) and
of the hardest (bottom left) and second hardest (bottom right) B hadron are considered. In the
main frame the y2b (black), y2b (green) and ybyt (blue) distribution are plotted at LO (dashed) and
NLO (solid), while the inset shows the ratio �(ybyt)/

�
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�
at LO and NLO.
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Figure 10: LO (dashed) and NLO (solid) predictions matched with Pythia8 in the 4FS (red for
y2b , violet for y

2

t ) and 5FS (black for y2b , light blue for y
2

t ), for the transverse momentum of the top
quark (left) and of the charged Higgs boson (right). Rescaling factors are introduced in the main
frame for better readability. The first and second insets show the ratio over the NLO prediction in
the 5FS for the y2b and y2t term respectively, and the scale uncertainty band for the NLO curves.
The third inset show the di↵erential K-factor (NLO/LO) for the four predictions. A charged Higgs
boson mass mH� = 200GeV is considered.

at LO (NLO), for mH� = 200GeV.9

Let us further investigate the potential impact of the inclusion of the ybyt term on some di↵er-
ential observables, for such a value of tan�. In particular, we look at the transverse momentum of
the Higgs, the top and the two hardest B hadrons for mH� = 200GeV, displayed in Fig. 9. From
these plots we notice that the e↵ect of the ybyt term is peaked at low scales, by reaching at most
6 � 7% of the full cross section, and is almost the same at LO and NLO. We stress again that
these numbers have been computed for the value of tan� for which the relative ybyt contribution is
maximal: for larger (smaller) values of tan�, this contribution is suppressed by a factor 1/ tan2 �
(tan2 �) with respect to the y2t (y2b ) contribution and further reduced for heavier charged Higgs
bosons. The typical scale uncertainties at NLO (⇠ 10 � 15%) justify our choice to neglect the
ybyt contribution in the current analysis. A viable alternative would be to include the relative
contribution of the ybyt term only at LO, which was shown to be very similar to the NLO one.

3.3 Four- and Five-flavour scheme comparison

We turn now to investigate how predictions obtained in the four- and five-flavours schemes compare.
The two schemes are actually identical up to b-mass power suppressed terms when computed to
all orders in perturbation theory, but the way of ordering the perturbative series is di↵erent. As a
consequence, the results in the two schemes may be di↵erent at any finite order, while the inclusion

9The di↵erence between the LO and NLO values is due to the di↵erent perturbative order in the running of yb.
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Figure 11: Same as Fig. 10, but for the transverse momentum (left) and pseudo-rapidity (right) of
the hardest b jet.

of higher orders necessarily brings the predictions in the two schemes closer to each other. We
start by quantifying how the inclusion of NLO corrections improves their mutual agreement. In
Figs. 10-12 we show, for some relevant observables, the LO and NLO predictions (matched with
Pythia8) in the two schemes. All figures have the same pattern: a main frame with the absolute
predictions in the 5FS (black for y2b and light blue for y2t ) and the 4FS (red for y2b and violet for
y2t ) at LO (dashed) and NLO (solid). In the first and second insets we show the ratio of the curves
in the main frame over the 5FS NLO prediction, for the y2b and y2t contributions respectively. For
the NLO predictions, a band indicating the scale uncertainty10 is attached to the curves. In the
third inset, the four di↵erential NLO/LO K-factors (y2b and y2t for 4FS and 5FS) are displayed.

A general observation is that, as expected, the NLO predictions in the two schemes are much
closer to each other than the LO ones, in particular as far as shapes are concerned. Di↵erences
in the overall normalisation reflect the di↵erences in the total cross section, which were already
discussed in Ref. [22], while in this comparison we are mostly interested in the shapes. In Fig. 10
we observe that for the transverse momentum of the top quark and the Higgs boson the di↵erence
between the two schemes can be compensated by a simple overall rescaling of the total rates
(�4FS

tot

/�5FS

tot

' 0.7) at NLO, while LO predictions in the two schemes have considerably di↵erent
shapes. The same level of agreement should be found also for observables related to the (leptonic)
decay products of the top quark and the Higgs. Let us recall that in our simulation we do not decay
the Higgs boson, but we decay leptonically the top quark. The b quark from the top decay mostly
ends up in the hardest b jet. This explains why the pT spectrum of the hardest b jet (left plot
in Fig. 11) displays a flat ratio between the 4FS and 5FS at NLO, up to ⇠ 120GeV. Above that
value, secondary g ! bb̄ splittings from hard gluons become more relevant, which is also reflected
in the growth of the 5FS uncertainty band and K-factor. A similar behaviour has been observed

10We recall that we vary both renormalisation and factorisation scales by a factor of 2 independently about their
central values.
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Figure 12: Same as Fig. 10, but for the transverse momentum (left) and pseudo-rapidity (right) of
the second-hardest b jet.

in the case of tH production in the SM [29]. The pseudo-rapidity of the hardest b jet (right plot in
Fig. 11) is mostly dominated by the low-pT region, and it therefore also displays a good agreement
between 4FS and 5FS shapes at NLO.

Larger di↵erences between the two schemes appear for the second-hardest b jet, which is ex-
pected to be poorly described in the 5FS. In particular, its kinematics in the 5FS at LO is deter-
mined by the shower, while at NLO it is driven by a tree-level matrix element (therefore being
formally only LO accurate). Predictions for the transverse momentum of the second b jet and
its pseudo-rapidity are shown in the left and right panels of Fig. 12. The 5FS develops large K-
factors and larger uncertainties, since its LO prediction stems only from the shower evolution.
Therefore, the 4FS description has to be preferred for these observables, both because of its better
perturbative behaviour and the proper modelling of the final-state b jets.

The e↵ects of the di↵erent treatment of the bottom quark in the two schemes is even more
visible for the di↵erential observables related to the hardest B hadron (see Fig. 13). At medium
and large pT (B1

) and at central ⌘(B
1

) similar e↵ects as for the hardest b jet are observed. At
variance, the 4FS prediction is suppressed with respect to the 5FS one at low pT (B1

) and at
large ⌘(B

1

). This is most likely due to mass e↵ects: these kinematical regions correspond to one
b quark being collinear to the beam. In the 5FS these configurations are enhanced because of
the collinear singularities, while in the 4FS such a singularities are screened by the b-quark mass.
Therefore, even after the PS, the 5FS is reminiscent of the collinear enhancement. In the case of
the second-hardest B hadron (not shown) these e↵ects are further enhanced.

Let us make a final remark on the inclusion of the NLO corrections. The NLO/LO K-factor
is quite di↵erent in the two schemes: in the 4FS the K�factor appears much more pronounced
for the y2t than for the y2b term, while in the 5FS it is similar for both contributions. Despite
that, a remarkable compensation in shape between the LO di↵erential cross sections and the NLO
corrections takes place, such that the 4FS/5FS ratio at NLO is quite similar for the y2b and y2t
terms.
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Figure 19: Same as Fig. 18, but for the ⌘ � � distance of the two hardest B hadrons with no cuts
(left) and requiring at least two b jets (right).

Figure 20: Same as Fig. 18, but for the jet (left) and b-jet (right) multiplicity.
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FIG. 2. Sample LO diagrams for the full pp → H±W∓bb̄ process: (a) non-resonant top-quark contribution; (b) single-resonant
top-quark contribution; (c) double-resonant top-quark contribution; (d) contribution involving neutral scalars.

Yukawa coupling. For the numerical values we follow
the recommendations of the LHC Higgs Cross Section
Working Group [41], which implies mOS

t = 172.5 GeV
and mOS

b = 4.92 GeV for the on-shell masses. Using
the four-loop conversion [42] and running, this corre-
sponds to the MS bottom mass mb(mb) ≃ 4.18 GeV and
mb(µ) ≃ 2.81 GeV, respectively. For the computation of
scale variations starting from mb(µ), a two-loop running
is employed.

Since the pp → H±W∓bb̄ process involves resonant
top-quark contributions, the width of the top quark has
to be included in the computation without spoiling gauge
invariance. This is achieved by employing the complex-
mass scheme [43, 44], where the top-quark mass (and
Yukawa coupling) are regarded as complex parameters.
For a given charged Higgs mass and tanβ, we compute
the corresponding top-quark width at the same perturba-
tive order in αs as the cross section. The charged Higgs
boson and the W boson are kept on-shell.

Compared to calculations of similar complexity (e.g.
the pp → W+W−bb̄ process in the 4FS [45, 46]), the
technical challenges of this process lie in the interplay
between the non-, single- and double-resonant contribu-
tions, which can have a different hierarchy depending on
mH± . On top of this, the cross section receives contribu-
tions with different powers of the bottom-quark Yukawa
coupling, and therefore its running cannot be accounted
for through an overall factor. Unlike in previous compu-
tations [18, 47] these contributions, including scale vari-
ations, are computed simultaneously. Moreover, this is
the first NLO computation in the complex-mass scheme
for a process with BSM particles.

Among the various Feynman diagrams contributing to
the pp → H±W∓bb̄ process, some include the neutral
Higgs states of the 2HDM (h, H , A) and their coupling
to bottom quarks, see Fig. 2 (d). We refrain from includ-
ing these contributions in our computation at NLO, but
briefly comment on the size of their effects below. To be
able to make quantitive statements we must make some
assumptions regarding the 2HDM parameters. We use
the so-called “alignment” region (cos(β − α) ≃ 0, with
α the mixing angle of the two CP even scalars), where
the 125GeV Higgs boson discovered at the LHC corre-
sponds to the light scalar h [48]. In principle, mA and
mH can be chosen such that the H and A states may

become resonant. In practice, if this choice is made, one
is de facto considering the simpler process pp → H/Abb̄,
with H/A → H±W∓ decay. Therefore, we will not con-
sider this case here. We have verified that the impact of
the neutral Higgs states is completely negligible for small
tanβ. At large tanβ (tanβ = 30), we found at most 7%
impact on the LO cross section for mH± > 180 GeV in
the configuration mH = mA ≃ mH± − 45 GeV. For
other values of mH± and for heavier neutral Higgses the
effect is smaller. Lighter neutral Higgses are strongly dis-
favoured by EW precision fits [49–51] and direct searches.
We thus reckon that our choice of not including contri-
butions from neutral Higgs bosons is justified, as their
small impact can be included separately and off-line at
LO without hampering the accuracy of our NLO results
presented below.

We now present our results for the total cross section
of the pp → H+W−bb̄ process (the charge-conjugated
process has the same total cross section) at NLO QCD,
at the 13 TeV LHC. We consider three different val-
ues of the tanβ parameter, tanβ = 1, 8, 30. The to-
tal cross sections at LO and NLO accuracy in the range
mH±/GeV ∈ [145, 200] are given in Tab. I, together with
the NLO K-factors, defined as the ratio K = σNLO/σLO.
Next to the total cross sections, we quote the scale and
PDF uncertainties. Scale uncertainties are computed
by varying independently the renormalisation and fac-
torisation scales in the range µr, µf ∈ [µ/2, 2µ] (albeit
keeping the scale in the computation of the top-quark
width fixed to the central value), while for PDF uncer-
tainties we follow the PDF4LHC15 procedure [36]. NLO
corrections are large; they increase the central value of
the total cross section by 50% − 60%, with only a very
mild dependence on the charged Higgs boson mass and
tanβ value, and significantly reduce the scale depen-
dence with respect to LO. More precisely, NLO scale
uncertainties range between 8%− 13% (10%− 17%) for
mH± < mt (mH± > mt). In both cases, the large-tanβ
(σ ∼ y2b ) scenario features larger scale uncertainties than
the small-tanβ (σ ∼ y2t ) one, because of the additional
µr-dependence introduced by the running of the bottom-
quark Yukawa coupling.
Further details on the behaviour of the scale uncertain-
ties can be inferred from Fig. 3, where we compare our
intermediate-mass range results to dedicated predictions

NLO in QCD	
Complex Mass Scheme (Top)

Single and double resonant
Neutral 

scalars (≲7%)
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4

mH± tanβ = 1 tanβ = 8 tan β = 30
[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.
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FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.
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mass range, in particular all cross sections are computed
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to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
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the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
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in the low and high-mass range.
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FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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FIG. 1. Sample LO diagrams for (a) light and (b) heavy
charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark
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charged Higgs production.

by the product of the top-pair production cross section
and the branching ratio of a top quark into a charged
Higgs boson, see Fig. 1 (a). Since the largest theoreti-
cal uncertainties stem from the top-pair production cross
section, which is currently known up to next-to-next-to-
leading order in perturbative QCD [2], the same theoret-
ical accuracy can be claimed for the production of a light
charged Higgs boson. The model-independent bounds on
the branching ratio of a light charged Higgs boson [3] are
transformed into limits in the (mH± , tanβ) plane, with
tanβ being the ratio of the vacuum expectation values of
the two Higgs doublets. Direct searches at the LHC, with
a centre-of-mass energy of 7 TeV [4–7] and 8 TeV [8, 9]
set stringent constraints on the parameter space with a
light charged Higgs boson.

Heavy charged Higgs boson scenarios, on the other
hand, correspond to charged Higgs masses larger than the
top-quark mass (typicallymH± ! 200GeV). In this case,
the dominant charged Higgs production channel is the as-
sociated production with a top quark [10], see Fig. 1 (b).
Theoretical predictions at NLO(+PS) have been com-
puted both at the inclusive and fully-differential level in
the five-flavour scheme (5FS) [11–18] and in the four-
flavour scheme (4FS) [18–20]. Charged Higgs searches
at 7 TeV [4], 8 TeV [9, 21, 22] and 13 TeV [23] have
set upper limits on the cross section for heavy charged
Higgs production times branching ratio BR(H± → τντ )
for charged Higgs boson masses ranging from 200 to 2000
GeV. In fact, the search in the H± → tb channel reveals
an excess of events above the background-only hypothe-
sis across a wide H± mass range, with up to 2.4 sigma
deviation [21].

The intermediate-mass range is associated with
charged Higgs masses close to the top-quark mass (145 "
mH± " 200GeV). In this region, finite top-width ef-
fects as well as the interplay between top-quark reso-
nant and non-resonant diagrams cannot be neglected.
Therefore, the full process pp → H±W∓bb̄ (with mas-
sive bottom quarks), see Fig. 2, including non-resonant,
single-resonant and double-resonant contributions, has
to be considered, to perform a reliable perturbative
computation of the charged Higgs cross section. The
intermediate-mass range has not been studied at the LHC
to date, mostly due to the lack of sufficiently accurate
and precise theoretical predictions. With this work we

close this gap, and provide an essential ingredient for
H± searches at Run II of the LHC.
Our computation employs a chain of automatic tools

in the MadGraph5 aMC@NLO+NLOCT frame-
work [24, 25], developed to study the phenomenology of
new physics models at NLO accuracy. In this framework,
NLOCT automatically computes the R2 rational terms
and the ultraviolet counterterms used in the virtual am-
plitudes, and relies internally upon FeynRules [26] and
FeynArts [27]. The one-loop matrix elements are com-
puted using the MadLoop module [28], which employs
CutTools [29] and Ninja [30, 31] for loop reduction
at the integrand level and IREGI [32] for tensor inte-
gral reduction. All methods are complemented by an
in-house implementation of the OpenLoops [33] algo-
rithm. For the factorisation of the IR poles in the
real-emission phase-space integrals, the resonance-aware
MadFKS [34, 35] module is used.
We work in the four-flavour scheme, where the bottom-

quark mass regulates any soft or collinear divergence re-
lated to final-state bottom-quark emissions, making it
possible to compute the total cross section without hav-
ing to impose artificial cuts on the final state particles. In
a 5FS version of this computation (bb̄ → H±W∓), non-,
single- and double-resonant contributions are included at
different accuracies. In particular the double-resonant
contributions only enter at NNLO (and beyond). Even
in that case, these contributions would be effectively in-
cluded only at lowest order, hampering the formal accu-
racy of the computation in the region mH± < mt, where
they are dominant. On the other hand, in our 4FS cal-
culation all contributions are included at NLO accuracy.
Moreover, the 4FS has been shown to provide reliable
predictions for the heavy-Higgs case [18, 19], without be-
ing spoiled by large logarithms. For consistency, we use
the four-flavour set of the PDF4LHC15 parton distribu-
tions [36–39], and the corresponding running of αs with
αs(mZ) = 0.1126.
The identification of the hard scales in a complex pro-

cess, such as the one at hand, is not necessarily a trivial
task. One has to bear in mind, however, that in the inter-
mediate region it is desirable to have a matching to the
scale in the pp → tt̄ cross section for light charged Higgs
masses, where the natural choice is of the order of the
top-quark mass (or below [40]), and for larger masses to
the scale in the heavy charged Higgs cross section, where
the scale µ = (mt +mH± +mb)/3 is typically applied in
4FS computations. We therefore fix our renormalisation
and factorisation scales (µr and µf ) to µ = 125 GeV,
which matches the numerical value used for the heavy
charged Higgs production at mH± = 200 GeV, while it
satisfies the requirement of being in between mt/2 and
mt for the light charged-Higgs case.
The top-quark mass and Yukawa coupling are renor-

malized on-shell, while we use a hybrid scheme for the
bottom-quark mass: kinematical bottom-quark masses
are treated with an on-shell renormalization, but the MS
renormalisation scheme is employed for the bottom-quark

Errors are 
reduced by a 

factor ~2

4

mH± tanβ = 1 tanβ = 8 tan β = 30
[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.
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determination of its quantum numbers to the form and
strength of its couplings, will require the best predic-
tions to be available to the experimental community.

The aim of this Letter is to provide for the first time a
fully general and process independent implementation
of the Lagrangian of a generic spin-2 particle so that
all the relevant production channels for the LHC can
be accurately simulated at NLO in QCD and to present
results for cross sections and distributions for the pro-
duction of the 750 GeV spin-2 resonance at the LHC 13
TeV.

2. Theoretical framework

We consider the effective field theory of a massive
spin-2 particle Y2 interacting with the SM fields. The
kinetic term of Y2 can be described by the well-known
Fierz-Pauli Lagrangian, with the positive-energy condi-
tion @µY

µ⌫
2 = 0, and the interactions with SM fields are

(V is a gauge field, while f are matter fields )

LY2
V,f = �

V, f

⇤
T V, f
µ⌫ Yµ⌫2 ,

where T V
µ⌫ (T f

µ⌫) are the energy-momentum tensors of V
( f ), respectively, i.e.,

T V
µ⌫ = �gµ⌫
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where the indices of other possible quantum numbers
(such as colour) are understood and Fµ⌫ is the field
strength of V . In the SM, the gauge fields V are
SU(2)L⇥U(1)Y ElectroWeak (EW) gauge bosons (W, B)
or the SU(3)C gluon g, while the matter fields f are
quarks, leptons and left-handed neutrinos. The gauge-
fixed term proportional to the Kronecker delta function
�mV ,0 in T V

µ⌫ indicates that it is needed only when V is
massless mV = 0 (i.e., V = g, �). The Y2 can also inter-
act with the SM Higgs doublet � via

LY2
�
= �H

⇤
T�µ⌫Y

µ⌫
2 ,

where the energy-momentum tensor T�µ⌫ is

T�µ⌫ = Dµ�†D⌫� + D⌫�
†Dµ� � gµ⌫(D⇢�†D⇢� � V(�)) .

After spontaneous symmetry breaking, one gets the
mass eigenstates of EW bosons (Z,W±, �) and SM
Higgs boson H. In addition, when working in the Feyn-
man gauge and at 1-loop level, the extra interaction of
Y2 and Fadeev-Popov (FP) ghost fields is necessary (e.g.
Refs. [35, 36]),

LY2
FP = �

V

⇤
T FP
µ⌫ Yµ⌫2 ,

where
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! being the FP ghost of the gluon field V = g and gs the
strong coupling constant.

Our implementation builds upon the FEYNRULES
package [37, 38] and the NLOCT program [39] which
are used to generate the UFO model [40] as well as
the counterterms for the renormalization and the ratio-
nal term R2. Some extended functionalities have been
implemented in NLOCT to handle the effective La-
grangian of a spin-2 particle. A point worth of stress-
ing concerns the renormalisation. With universal cou-
plings, e.g, g = q no extra renormalisation procedure
is needed beyond the usual ones of the SM as the spin-2
current is conserved. On the contrary, for non-universal
couplings, the spin-2 current is not conserved and spe-
cific renormalisation constants need to be introduced to
cancel left-over ultraviolet divergences [23]. These ex-
tra couplings are renormalised as
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by NLOCT, where CF =
4
3 ,TF =

1
2 . Our implementa-

tion is general and allows for models with non-universal
couplings case to be studied at NLO accuracy.

The corresponding spin-2 UFO model [41] is di-
rectly employable in the MADGRAPH5 aMC@NLO
framework [42] to perform phenomenological studies
at NLO QCD accuracy including matching to PS. One-
loop contributions are calculated numerically by the
MADLOOP module [43] with the tensor integrand-level
reduction method [44, 45] that was implemented in
NINJA [46, 47]. The real emission contributions are cal-
culated with the Frixione-Kuntz-Signer (FKS) subtrac-
tion method [48, 49] implemented in MADFKS [50].
Finally, the MC@NLO formalism [51] is employed to
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or the SU(3)C gluon g, while the matter fields f are
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are used to generate the UFO model [40] as well as
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implemented in NLOCT to handle the effective La-
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is needed beyond the usual ones of the SM as the spin-2
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by NLOCT, where CF =
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tion is general and allows for models with non-universal
couplings case to be studied at NLO accuracy.

The corresponding spin-2 UFO model [41] is di-
rectly employable in the MADGRAPH5 aMC@NLO
framework [42] to perform phenomenological studies
at NLO QCD accuracy including matching to PS. One-
loop contributions are calculated numerically by the
MADLOOP module [43] with the tensor integrand-level
reduction method [44, 45] that was implemented in
NINJA [46, 47]. The real emission contributions are cal-
culated with the Frixione-Kuntz-Signer (FKS) subtrac-
tion method [48, 49] implemented in MADFKS [50].
Finally, the MC@NLO formalism [51] is employed to
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(such as colour) are understood and Fµ⌫ is the field
strength of V . In the SM, the gauge fields V are
SU(2)L⇥U(1)Y ElectroWeak (EW) gauge bosons (W, B)
or the SU(3)C gluon g, while the matter fields f are
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fixed term proportional to the Kronecker delta function
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mass eigenstates of EW bosons (Z,W±, �) and SM
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strong coupling constant.
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plings, e.g, g = q no extra renormalisation procedure
is needed beyond the usual ones of the SM as the spin-2
current is conserved. On the contrary, for non-universal
couplings, the spin-2 current is not conserved and spe-
cific renormalisation constants need to be introduced to
cancel left-over ultraviolet divergences [23]. These ex-
tra couplings are renormalised as

�g =
↵s

3⇡
TF

X

q

⇣

g � q

⌘

0

B

B

B

B

B

@

1
✏
� �E + log 4⇡ + log

µ2
R

m2
Y2

1

C

C

C

C

C

A

,

�q =
2↵s

3⇡
CF

⇣

q � g

⌘

0

B

B

B

B

B

@

1
✏
� �E + log 4⇡ + log

µ2
R

m2
Y2

1

C

C

C

C

C

A

,

by NLOCT, where CF =
4
3 ,TF =

1
2 . Our implementa-

tion is general and allows for models with non-universal
couplings case to be studied at NLO accuracy.
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loop contributions are calculated numerically by the
MADLOOP module [43] with the tensor integrand-level
reduction method [44, 45] that was implemented in
NINJA [46, 47]. The real emission contributions are cal-
culated with the Frixione-Kuntz-Signer (FKS) subtrac-
tion method [48, 49] implemented in MADFKS [50].
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where the indices of other possible quantum numbers
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or the SU(3)C gluon g, while the matter fields f are
quarks, leptons and left-handed neutrinos. The gauge-
fixed term proportional to the Kronecker delta function
�mV ,0 in T V

µ⌫ indicates that it is needed only when V is
massless mV = 0 (i.e., V = g, �). The Y2 can also inter-
act with the SM Higgs doublet � via

LY2
�
= �H

⇤
T�µ⌫Y

µ⌫
2 ,

where the energy-momentum tensor T�µ⌫ is

T�µ⌫ = Dµ�†D⌫� + D⌫�
†Dµ� � gµ⌫(D⇢�†D⇢� � V(�)) .

After spontaneous symmetry breaking, one gets the
mass eigenstates of EW bosons (Z,W±, �) and SM
Higgs boson H. In addition, when working in the Feyn-
man gauge and at 1-loop level, the extra interaction of
Y2 and Fadeev-Popov (FP) ghost fields is necessary (e.g.
Refs. [35, 36]),

LY2
FP = �

V

⇤
T FP
µ⌫ Yµ⌫2 ,

where

T FP
µ⌫ = �gµ⌫

h

(@⇢!̄a)
⇣

@⇢!
a
⌘

� gs f abc (@⇢!̄a)!bVc
⇢

i

+
h⇣

@µ!̄
a
⌘

(@⌫!a) � gs f abc
⇣

@µ!̄
a
⌘

!bVc
⌫ + (µ$ ⌫)

i

,

! being the FP ghost of the gluon field V = g and gs the
strong coupling constant.

Our implementation builds upon the FEYNRULES
package [37, 38] and the NLOCT program [39] which
are used to generate the UFO model [40] as well as
the counterterms for the renormalization and the ratio-
nal term R2. Some extended functionalities have been
implemented in NLOCT to handle the effective La-
grangian of a spin-2 particle. A point worth of stress-
ing concerns the renormalisation. With universal cou-
plings, e.g, g = q no extra renormalisation procedure
is needed beyond the usual ones of the SM as the spin-2
current is conserved. On the contrary, for non-universal
couplings, the spin-2 current is not conserved and spe-
cific renormalisation constants need to be introduced to
cancel left-over ultraviolet divergences [23]. These ex-
tra couplings are renormalised as

�g =
↵s

3⇡
TF

X

q

⇣

g � q

⌘

0

B

B

B

B

B

@

1
✏
� �E + log 4⇡ + log

µ2
R

m2
Y2

1

C

C

C

C

C

A

,

�q =
2↵s

3⇡
CF

⇣

q � g

⌘

0

B

B

B

B

B

@

1
✏
� �E + log 4⇡ + log

µ2
R

m2
Y2

1

C

C

C

C

C

A

,

by NLOCT, where CF =
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couplings case to be studied at NLO accuracy.

The corresponding spin-2 UFO model [41] is di-
rectly employable in the MADGRAPH5 aMC@NLO
framework [42] to perform phenomenological studies
at NLO QCD accuracy including matching to PS. One-
loop contributions are calculated numerically by the
MADLOOP module [43] with the tensor integrand-level
reduction method [44, 45] that was implemented in
NINJA [46, 47]. The real emission contributions are cal-
culated with the Frixione-Kuntz-Signer (FKS) subtrac-
tion method [48, 49] implemented in MADFKS [50].
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Figure 1: Summary plot of NLO cross sections and corresponding K factors for the various spin-2 particle production processes
listed in Table 2, where the scale, PDF, ↵s and mass uncertainties have been taken into account in �

(N)LO

�LO (lower pannel).

perform the matching between fixed-order NLO calcu-
lations and PS, hence making event generation possible.

3. Production at LHC

We now present predictions for the production of a
750 GeV spin-2 particle Y2 for a wide range of produc-
tion channels that could be relevant at the LHC with
a center-of-mass energy of

p
s =13 TeV. The (N)LO

total cross sections of various Y2 production processes
are given in Table 2 and summarised in Figure 1. We
consider a minimal “basis” of predictions, the univer-
sal couplings (( 1

⇤
, 2
⇤

) = (1, 1) TeV�1) and two non-
universal couplings cases (( 1

⇤
, 2
⇤

) = (1, 0), (0, 1) TeV�1)
where the definition of 1 and 2 are given in Table 1.

We have employed NLO PDF4LHC15 [52] set with
30+2 members to estimate the PDF and ↵s uncertainties.
Missing higher-order QCD corrections are estimated by
independently varying the renormalization scale µR and
factorization scale µF between 1/2µ0 to 2µ0, µ0 being
the sum of the transverse masses of the final states. In
Table 2, the quoted uncertainties come from scale vari-
ation, PDF and ↵s, respectively. The last entry gives the
parametric variation of the cross section when the res-
onance mass is varied between mY2 = 750 ⌥ 10 GeV.
Relevant SM parameters are the top mass mt = 173.3
GeV, the Z-boson mass mZ = 91.1876 GeV, the W±

mass mW = 79.82436 GeV, the electromagnetic cou-
pling constant ↵�1(mZ) = 127.9, and zero widths for all
particles. For simplicity, we adopt the 5-flavour scheme
and the CKM mixing matrix set to unity.

Cross sections for i) pp ! Y2 + j, ii) pp ! Y2 + j j
and iii) pp ! Y2 + � require a jet (or photon) defini-
tion and kinematical cuts. The jets are defined by the

Process Couplings set
pp! Y2,Y2 + j,Y2 + j j 1 = g, 2 = q,t

pp! Y2 + tt̄ 1 = g,q, 2 = t
pp! Y2 + Z 1 = g,q,t, 2 = B,W,H

pp! Y2 +W± 1 = g,q,t, 2 = B,W,H
pp! Y2 + � 1 = g,q,t, 2 = B,W,H
pp! Y2 + H 1 = g,q,t, 2 = B,W,H

Y2 ! j j 1 = g, 2 = q,t
Y2 ! tt̄ 1 = g, 2 = t

Table 1: Definition of the couplings 1,2 for different processes.

anti-kT algorithm [53] as implemented in FASTJET [54]
with R = 0.4. We also require cuts on the transverse
momentum pT ( j) and the pseudorapidity ⌘( j) of jets.
The photon is required to be isolated using Frixione’s
criterion [55], where the isolation parameters used in
Eq. (3.4) of Ref. [55] have been set to ✏� = 1, n = 1, �0 =
0.4. Cuts are chosen on a process-dependent basis: i)
pT ( j) > 100 GeV, ii) pT ( j) > 50 GeV and |⌘( j)| < 4.5
and M( j1, j2) > 400 GeV, iii) pT (�) > 50 GeV and
|⌘(�)| < 2.5.

Several sources of theoretical uncertainties have been
considered. As expected, the PDF and the paramet-
rical ↵s uncertainties strongly depend on the process.
�(pp ! Y2 + tt̄) suffers from the largest PDF uncer-
tainty, 7% � 10%, which is comparable in size to the
scale uncertainty and due to the relatively poor knowl-
edge of the gluon PDFs at large values of the Bjorken
x. �(pp ! Y2 + tt̄) and �(pp ! Y2 + j j), starting
at order ↵2

s , are also sensitive to the ↵s parametric un-
certainty, while for all other processes it is negligible.
The cross section dependence on the mass of the reso-
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Figure 1: Summary plot of NLO cross sections and corresponding K factors for the various spin-2 particle production processes
listed in Table 2, where the scale, PDF, ↵s and mass uncertainties have been taken into account in �
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perform the matching between fixed-order NLO calcu-
lations and PS, hence making event generation possible.

3. Production at LHC

We now present predictions for the production of a
750 GeV spin-2 particle Y2 for a wide range of produc-
tion channels that could be relevant at the LHC with
a center-of-mass energy of

p
s =13 TeV. The (N)LO

total cross sections of various Y2 production processes
are given in Table 2 and summarised in Figure 1. We
consider a minimal “basis” of predictions, the univer-
sal couplings (( 1

⇤
, 2
⇤

) = (1, 1) TeV�1) and two non-
universal couplings cases (( 1

⇤
, 2
⇤

) = (1, 0), (0, 1) TeV�1)
where the definition of 1 and 2 are given in Table 1.

We have employed NLO PDF4LHC15 [52] set with
30+2 members to estimate the PDF and ↵s uncertainties.
Missing higher-order QCD corrections are estimated by
independently varying the renormalization scale µR and
factorization scale µF between 1/2µ0 to 2µ0, µ0 being
the sum of the transverse masses of the final states. In
Table 2, the quoted uncertainties come from scale vari-
ation, PDF and ↵s, respectively. The last entry gives the
parametric variation of the cross section when the res-
onance mass is varied between mY2 = 750 ⌥ 10 GeV.
Relevant SM parameters are the top mass mt = 173.3
GeV, the Z-boson mass mZ = 91.1876 GeV, the W±

mass mW = 79.82436 GeV, the electromagnetic cou-
pling constant ↵�1(mZ) = 127.9, and zero widths for all
particles. For simplicity, we adopt the 5-flavour scheme
and the CKM mixing matrix set to unity.

Cross sections for i) pp ! Y2 + j, ii) pp ! Y2 + j j
and iii) pp ! Y2 + � require a jet (or photon) defini-
tion and kinematical cuts. The jets are defined by the

Process Couplings set
pp! Y2,Y2 + j,Y2 + j j 1 = g, 2 = q,t

pp! Y2 + tt̄ 1 = g,q, 2 = t
pp! Y2 + Z 1 = g,q,t, 2 = B,W,H

pp! Y2 +W± 1 = g,q,t, 2 = B,W,H
pp! Y2 + � 1 = g,q,t, 2 = B,W,H
pp! Y2 + H 1 = g,q,t, 2 = B,W,H

Y2 ! j j 1 = g, 2 = q,t
Y2 ! tt̄ 1 = g, 2 = t

Table 1: Definition of the couplings 1,2 for different processes.

anti-kT algorithm [53] as implemented in FASTJET [54]
with R = 0.4. We also require cuts on the transverse
momentum pT ( j) and the pseudorapidity ⌘( j) of jets.
The photon is required to be isolated using Frixione’s
criterion [55], where the isolation parameters used in
Eq. (3.4) of Ref. [55] have been set to ✏� = 1, n = 1, �0 =
0.4. Cuts are chosen on a process-dependent basis: i)
pT ( j) > 100 GeV, ii) pT ( j) > 50 GeV and |⌘( j)| < 4.5
and M( j1, j2) > 400 GeV, iii) pT (�) > 50 GeV and
|⌘(�)| < 2.5.

Several sources of theoretical uncertainties have been
considered. As expected, the PDF and the paramet-
rical ↵s uncertainties strongly depend on the process.
�(pp ! Y2 + tt̄) suffers from the largest PDF uncer-
tainty, 7% � 10%, which is comparable in size to the
scale uncertainty and due to the relatively poor knowl-
edge of the gluon PDFs at large values of the Bjorken
x. �(pp ! Y2 + tt̄) and �(pp ! Y2 + j j), starting
at order ↵2

s , are also sensitive to the ↵s parametric un-
certainty, while for all other processes it is negligible.
The cross section dependence on the mass of the reso-
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Figure 2: Differential distributions for various Y2 production processes by matching NLO calculations with PS program PYTHIA 8.2
with the universal couplings assumption (1/⇤, 2/⇤) = (1, 1) TeV�1: (a) transverse momentum spectrum of Y2 (b) pseudorapidity
distribution of Y2. Y2 + H is loop-induced and calculated at leading order.

momentum pT (Y2) and pseudorapidity ⌘(Y2) distribu-
tions of Y2 for the nine production processes, respec-
tively. Note that for inclusive production the accuracy of
d�
dpT

(pp! Y2) is only at the LO level when pT (Y2) , 0.
We stress that, even though we do not present the re-
sults here, inclusive samples with formal NLO accu-
racy for different jet multiplicities can be obtained by
suitably merging NLO samples with the corresponding
parton multiplicities. In MADGRAPH5 aMC@NLO
this can be done automatically employing the FxFx
method [59]. Nevertheless, one can already see that the
curve d�

dpT
(pp ! Y2 + j) overlaps with d�

dpT
(pp ! Y2)

when pT (Y2) > 400 GeV. In this range d�
dpT

(pp! Y2+ j)
provides the NLO results for this observable and indeed
one notices that the theoretical uncertainty is reduced.
The differential K factors in pT (Y2) are rather constant
for the three QCD processes, while they tend to increase
with pT (Y2) for the four EW processes. The increase
in the latter case is due to the opening of new partonic
channels, (anti-)quark-gluon initial states at NLO, while
at LO only quark-antiquark initial states contribute.

We now turn to studying distributions for non-
universal couplings cases. Ref. [23] pointed out that
when g , q the spin-2 current is not conserved and
2 ! 2 squared amplitudes, such as qg ! Y2q, feature
a dramatic growth with the parton level center of mass
energy ŝ, scaling as (g � q)2 ŝ3/m4

Y2
/⇤2 (see also e.g.

Ref. [19]). We have reproduced the similar unitarity-
violation curves for pp ! Y2 with mY2 = 750 GeV in

Figure 3a. In addition, we show the pT (Y2) distributions
in the non-universal coupling cases for pp! Y2+ j and
pp! Y2 + Z. Similarly to pp! Y2, the very hard tails
are seen again in the other two processes, highlighting
the unitarity-violating behaviour of the non-universal
coupling scenarios. To investigate the source of the dif-
ferent curves, we separate in Figure 3b the contributions
from the different helicity configurations of Y2. The
leading unitarity-violation behaviour ŝ3/m4

Y2
/⇤2 comes

from the helicity h = 0 contribution, the h = 1 con-
tributions have a subleading growth ŝ2/m2

Y2
/⇤2, while

h = 2 curves are consistent with what is expected
from dimension-five operators. The dramatic unitarity-
violation behaviour of the non-universal coupling case
underlines the inadequacy/incompleteness of any naive
effective field theory for a massive spin-2 particle [60]
and calls for the implementation of extra mechanisms
(such as the introduction of other degrees of freedom)
that restore unitarity up to scales⇤ parametrically larger
than mY2 .

Finally, we use our results to evaluate the acceptance
efficiencies at NLO+PS for pp ! Y2 ! �� in the uni-
versal couplings. We define the acceptance as

A =
�|pT (�1)>p1

T,min,pT (�2)>p2
T,min,|⌘(�)|<2.5

�(pp! Y2 ! ��)
, (1)

where �1 is the hardest photon and �2 is the second
hardest photon. In Figure 4, the 2-D acceptance plots
without any pT (Y2) cut and with pT (Y2) > 300 GeV are

5

Y2+H is LO (Loop-induced)
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Figure 3: Transverse momentum distributions of Y2 with non-universal couplings (a) in pp ! Y2,Y2 + j,Y2 + Z at NLO accuracy
matched to PS (b) in pp! Y2 + j with the breakdown of different Y2 helicity contributions at NLO.

given. The plots show that many events tend to have the
pT (�) larger than a value close to mY2/2, regardless of
whether the Y2 is boosted or not. We have also checked
at NLO+PS that the acceptance of the photon in pT (�)
depends on the choice of the spin-2 couplings to quarks
and gluons, as already pointed out in Ref. [14]. NLO
QCD corrections also change the acceptance A com-
pared to the corresponding LO calculation. For exam-
ple, at p1

T,min = p2
T,min = 200 GeV, ALO = 59.1% while

ANLO = 64.1%.

In order to compare our results with the result
�(pp ! Y2) ⇥ Br(Y2 ! ��) = 5 fb at the 13 TeV
LHC [61, 62, 63], after fixing the universal coupling
i = 1, we obtain

⇤NLO = 386.161 ⇥
p

Br(Y2 ! ��) TeV = 80 TeV ,

⇤LO = 334.718 ⇥
p

Br(Y2 ! ��) TeV = 69 TeV ,

where we assumed the branching ratio Br(Y2 ! ��) =
4.3% as provided in Table. 3 and derived in the next
section.

4. Partial decay widths

The LO partial decay widths of the spin-2 particle Y2
to SM particles can be written as

�LO(Y2 ! f f̄ ) =
2f N f

c m3
Y2

160⇡⇤2 (1 � 4r f )3/2(1 +
8
3

r f ), f , ⌫

�LO(Y2 ! ⌫ f ⌫̄ f ) =
2⌫ f

m3
Y2

320⇡⇤2 ,

�LO(Y2 ! gg) =
2gm3

Y2

10⇡⇤2 ,

�LO(Y2 ! ��) =
2�m

3
Y2

80⇡⇤2 ,

�LO(Y2 ! Z�) =
2Z�m

3
Y2

240⇡⇤2 (1 � rZ)3
⇣

6 + 3rZ + r2
Z

⌘

,

�LO(Y2 ! ZZ) =
m3

Y2

960⇡⇤2 (1 � 4rZ)1/2 f (rZ) ,

�LO(Y2 ! W+W�) =
m3

Y2

480⇡⇤2 (1 � 4rW )1/2 f (rW ) ,

�LO(Y2 ! HH) =
2Hm3

Y2

960⇡⇤2 (1 � 4rH)5/2,

where f (rV ) = 2H + 122V +rV (122H + 80HV � 362V )
+r2

V (562H � 80HV + 722V ), and we have defined
the dimensionless quantities ri = m2

i /m
2
Y2

, N f
c is the

colour of f (i.e., N f
c = 1 for leptons and N f

c = 3
for quarks) and � = B cos2 ✓W + W sin2 ✓W , Z =
B sin2 ✓W + W cos2 ✓W , Z� = (W � B) cos ✓W sin ✓W
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a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
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quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
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the subscript i = 1, 2 represents the generation of the
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blet. A diagonal CKM matrix is assumed. The group
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ϕ†←→D I
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vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
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uW and O(i3,3i)
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correspond to weak- and color-dipole couplings. In par-
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is actually implemented as O(i3)
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avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:
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where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for
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LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for

3

FIG. 1. Tree-level diagrams for pp → tV and pp → th. The
black dots represent contributions from color dipole operators
O

(i3,3i)
uG , while the shaded squares represent other operators.

the rational R2 terms which are required by the OPP
technique [27]. These are computed fully automatically
by the NLOCT [28] package, which has been extended
to handle EFT’s i.e., to compute the R2 and UV diver-
gent parts of amplitudes with integrals of arbitrary high
ranks. Currently, such calculations are limited to opera-
tors with up to two fermion fields. The determination of
the UV divergent part of the counterterms is obtained by
simply changing the sign of the UV divergent part of the
corresponding amplitude. This avoids the translations of
the counterterms vertices in the operator renormalization
constants and the associated basis reduction. However, it
is only valid when the dimension-six operators are renor-
malized in the MS scheme.
We have extensively checked our implementation by

evaluating the virtual contributions of ug → t, uγ → t,
uZ → t, uh → t and ug → th (with uth coupling only)
and comparing them with corresponding known analyt-
ical expressions numerically. In each case the results
agree. In addition we have checked the gauge invari-
ance of all virtual contributions, as well as the pole can-
cellation when combining virtual and real contributions.
When possible, we have also made comparisons with the
results for total cross sections for pp → tγ, tZ, th at the
fixed order of Refs. [9–11], finding consistent results.

IV. CALCULATION

As an application of our general framework to the phe-
nomenology of the top quark FCN at the LHC, we con-
sider three processes, pp → tγ, pp → tZ and pp → th.
The LO diagrams are shown in Fig. 1. Each process re-
ceives contributions from two different interactions, one
from utg coupling and the other from utB coupling. At
NLO in QCD the utg operator will mix with other op-
erators, and as a result a NLO calculation needs to be
carried out with the full set of operators.
Our numerical results are obtained by employing the

following input parameters

mZ = 91.1876 GeV, α = 1/127.9,

GF = 1.166370× 10−5 GeV−2,

mt = 172.5 GeV, mh = 125 GeV, Λ = 1 TeV. (4)

We use CTEQ6M for NLO and CTEQ6L for LO calcula-
tions respectively, with their respective values of αS [29].

The renormalization scale µr and factorization scale µf

are chosen to be mt +mB for the pp→ tB process, and
are allowed to vary independently by a factor of 0.5 to
2. In pp → tγ, we require the photon pT > 50 GeV
and its pseudorapidity |η| < 2.5. For the photon, we em-
ploy the isolation criterium of Ref. [30] with a radius of
0.4. The events are then showered with PYTHIA6 [31] or
HERWIG6 [32]. Finally, we have checked that the dou-
bly resonant diagrams with the antitop decaying through
FCN interactions have a small impact, yet they have been
removed from the real contributions, see Ref. [33].
Currently the best limits on top FCN couplings are

from the decay searches of t → qZ [34], t → qh [35, 36],
and the production searches of qg → t [37] and qg → tγ
[38]. To make a viable choice for the operator coefficients
in our calculation, we exploit the results of Ref. [22] that
are based on a global fit on the full set of current limits

Coefficient Limit Coefficient Limit Relevant
production

C(j,i+3)
ϕq 1.05 C(i+3)

ϕu 1.05 tZ

C(13,31)
uG 0.041 C(23,32)

uG 0.093 tγ, tZ, th

C(13,31)
uW 0.92 C(23,32)

uW 1.1 tγ, tZ

C(13,31)
uB 1.0 C(23,32)

uB 1.9 tγ, tZ

C(13,31)
uϕ 3.5 C(23,32)

uϕ 3.5 th

where i = 1, 2, j = 1, 3, and the limits apply to the mod-
uli of the coefficients, assuming Λ = 1 TeV. Each limit
is obtained by marginalizing over all the other operator
coefficients. In this work, we choose real and positive val-
ues for the coefficients that do not exceed these bounds.
The total cross sections at the LHC at

√
s = 13 TeV cor-

responding to each operator are displayed in Tables I, II
and III. The scale uncertainties are also displayed. As ex-
pected the K factors are generally sizeable and the scale
uncertainties are significantly reduced at NLO. This is

the case for all operators except for O(i3,3i)
uG in tγ produc-

tion. This process has an unusually large K factor when

the flavor-changing coupling is coming from O(i3,3i)
uG . As

shown in Table I, vetoing any extra jet with pT > 50 GeV
reduces the K factor from 2.3 (3.3) to 1.6 (2.3) for utg
(ctg) coupling as well as the uncertainties for this pro-
duction mechanism. Note also that a jet veto can help
to improve the signal over the SM background ratio, for
all three processes.

V. DIFFERENTIAL CROSS SECTIONS

The pT distributions of the top quark in pp→ tγ and
pp→ th are shown in Fig. 2. Both LO and NLO signals
are displayed, together with the SM backgrounds from
pp→ tγj and thj, which are generated at NLO with the

same parameters. In all cases the O(13)
uG contributions

are very small due to the stringent limit from ug → t
production. Therefore, the pp → tX processes appear
more as confirmation than as a discovery channel for the
chromomagnetic operator.

Small when constraints from	
              are taken into	
 account
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both SM and beyond processes. NLO accurate predic-
tions in QCD are required in order to correctly extract
FCN couplings from measurements or to set reasonable
limits on their sizes. In this paper we have presented
the first complete NLO computation for the single top
production processes u(c) + g → t+B, B = γ, Z, h, i.e.,
including all dimension-six flavor-changing (two fermion)
operators. In particular, the chromomagnetic operators
with their extra nontrivial effects have been added. Our
computation is based on the MadGraph5 aMC@NLO

framework, and thus the computation is fully automatic
and can be applied to other FCN processes. The match-
ing of the NLO results to the parton shower is included as
well. The K factors in all the FCN processes are found to
be large, and are in general not constant over the phase
space. Our work is a first step toward the automation of
NLO computations relevant for searches of new interac-
tions through the effective field theory framework.
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Example 1: Charged Higgs production

3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.
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possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of
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evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
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of each scheme on the di↵erent Monte Carlos are analysed.
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are of similar size and the relative contribution of the ybyt term to the total cross section is close
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and

the distributions on the shower scale µ
sh

, when varied by a factor in the range [1/
p
2,
p
2], is

rather mild and significantly smaller than uncertainties associated with the renormalisation and
factorisation scales; we therefore refrain from including uncertainties associated with µ

sh

in what
follows. Furthermore, we will not discuss any PDF systematics.3

Jets are reconstructed via the anti-kT algorithm [59], as implemented in FastJet [60,61], with
a distance parameter �R = 0.4 and subject to the conditions

pT (j) � 25GeV, |⌘(j)|  2.5. (11)

For fixed-order computations jets are clustered from partonic final states, while in simulations
matched to parton showers jets are made up of hadrons; b jets are defined to contain at least one
b quark (at fixed order) or B hadron (in matched simulations).

In our simulations we keep the charged Higgs boson stable, while we decay the top quark
leptonically (although the leptons from the decay will not a↵ect any observable we consider) in
order to keep as much control as possible on the origin of QCD radiation. The task to decay the
top quark is performed by the parton shower for (N)LO+PS runs, while at fixed order we simulate
the decay t ! bW in an isotropic way (in the t rest frame) at the analysis level.4 No simulation of
the underlying event is performed by the parton shower.

Let us conclude this section by addressing one further point, which is crucial when processes
with final-state b quarks are matched to parton showers: the choice of the shower starting scale µ

sh

.
Such processes are known to prefer much lower values of the renormalisation and factorisation scales
than the one naively identified as the hard scale of the process (ŝ). In fact, the shower starting scale
and the factorisation scale emerge both from the same concept, namely the separation of soft and
hard physics. Furthermore, it has been argued in Ref. [28] for the associated production of a neutral
Higgs boson with bottom quarks that the shower starting scale (limiting the hardest emission that
the shower can generate) should be set at similar values, i. e. well below ŝ. Following the arguments
made in Ref. [28], we check their validity in the case of charged Higgs boson production. We shall
stress at this point that the following discussion applies both to our reference scenarios with
mH� = 200GeV and mH� = 600GeV, although we refrain from showing explicit results for the
latter.

MadGraph5 aMC@NLO assigns a dynamical shower scale chosen from a distribution in the
range5

0.1

F
ŝ  µ

sh

 1

F
ŝ, (12)

where F is a parameter that drives the bounds of the distribution, and whose default value is
F = 1. With such a default setting the e↵ective value of µ

sh

, namely the maximum of the µ
sh

distribution (which for simplicity we will refer to as just µ
sh

in the following), is indeed much
larger than µF,R. Furthermore, considering the transverse momentum distribution of the Born-
level “system” (pT (sys)),6 which is maximally sensitive to the interplay between the fixed-order
prediction and the shower, the NLO+PS distribution (in particular in the 4FS) does not match
the fixed-order NLO (fNLO) one at large pT for F = 1. This can be deduced from Fig. 2, when
comparing the crosses (NLO+PS for F = 1) to the solid curves overlayed with points (fNLO). On
the contrary, we observe a clearly improved high-pT matching of the NLO+PS results to the fixed-

3Note that scale variations due to µF and µR as well as PDF uncertainties are computed at no extra CPU cost
using the reweighting procedure of Ref. [56].

4 Such an approach neglects spin-correlation in the decay of the top quark. However, within the Mad-
Graph5 aMC@NLO framework, spin correlation can be included in (N)LO+PS runs by decaying the top quark
with MadSpin [62].

5See Ref. [32] for further details.
6Note that the Born-level system is unambiguously defined only in a fixed-order calculation, being in our case

the charged Higgs accompanied by the final state top and bottom quark. At NLO+PS we define it to include the
hardest B hadron (instead of the bottom quark), which does not originate from the top decay; in this case, MC-truth
is used.
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