Status and plans of the CLIC detector and physics study

CLIC collaboration meeting March 8th, 2017

Dominik Dannheim (CERN)
on behalf of the
CLIC detector and physics (CLICdp) collaboration

CLIC detector & physics collaboration

- CLICdp collaboration addresses detector and physics issues for CLIC
- CERN acts as host laboratory
- Currently 29 institutes from 18 countries, ~180 members http://clicdp.web.cern.ch/
- Close connection to ILC detector concepts, CALICE, FCAL, AIDA-2020

CLIC physics program

CLIC staging baseline:

- Stage 1: 500 fb⁻¹ @ 380 GeV
 + 100 fb⁻¹ @ ~350 GeV (top threshold scan)
 Precision SM Higgs and top physics
- Stage 2: 1.5 ab⁻¹ @1.5 TeV BSM physics, rare Higgs processes
- Stage 3: 3 ab⁻¹ @ 3 TeV BSM physics, rare Higgs processes

Staging baseline document

CERN-2016-004

- Physics case for 350/380 GeV
- Optimization of energy stages and running scenario for 22 years of operation

CLIC staging scenario

March 8, 2017

CLIC physics reach: SM + SUSY example

CLICdp status and plans

Higgs measurements

 Comprehensive paper on Higgs physics at CLIC: arXiv:1608.07538, submitted to EPJC

H. Marcurello, J. Marcule, J.

- Production cross sections for different processes cover wide energy range
 - → Higgs measurements profit from all stages
- Large event samples for main production mechanisms expected
- Geant4-based full detector simulation studies with background and pile-up overlay for 350 GeV, 1.4 TeV and 3 TeV
- High selection efficiencies in most cases

	350 GeV	1.4 TeV	3 TeV
L_{int}	$500~{ m fb}^{-1}$	$1.5~{ m ab}^{-1}$	$2~ab^{-1}$
# ZH events	68 000	20 000	11 000
$\#$ $H u_e ar{ u_e}$ events	17 000	370 000	830 000
$\#$ He^+e^- events	3 700	37 000	84 000

For unpolarised beams. Hvv increases ×1.8 for -80% e-polarisation (CLIC baseline)

Higgsstrahlung e+e-→ZH @ ~350 GeV

- Benchmark studies for e+e-→ZH @ 350 GeV, 500 fb⁻¹
- Select ZH through recoil mass against Z
 → model-independent
 - measurement: $\Delta \sigma_{HZ} \sim g_{HZZ}^2$
- Combined uncertainty on $\Delta(g_{HZZ}) \sim \pm 0.8\%$
- ZH → Hqq gives access to invisible Higgs decays: BR(H→inv) < 1% @ 90% CL

- ZH→Zqq studies for 250, 350, 420 GeV
- Trade-off between jet-energy resolution and signal/background
- Best performance at ~350 GeV
 → drives choice of 380 GeV
 for first energy stage
 (together with top physics)

March 8, 2017

CLICdp status and plans

Higgs measurements at higher energies

WW fusion: e+e-→Hvv/He+e-

- σ~log(s), dominant >450 GeV
- Access to H→cc and rare decays like H→µµ

ttH production: e+e-→ttH

- Sensitive to top-Yukawa coupling
- 2400 events @ 1.4 TeV, 1.5ab⁻¹ (1400 @ 3 TeV, 2ab⁻¹)

Double-Higgs production: e+e-→HHvv

- Sensitive to trilinear self coupling parameter λ and to quartic coupling g_{HHWW}
- Small cross section:
 225 events @ 1.4TeV, 1.5ab-1
 (1200 @ 3TeV, 2ab-1)
 - → needs high energy and luminosity

Higgs measurements - summary

- Model independent extraction only at lepton colliders, due to model independent measurement of g_{HZZ}
- Significant improvements from higher energy stages
- Many couplings measured with ~1% precision
- Higgs width extracted with 5-3.5% precision
- Model dependent fits can achieve precision below 1%

Top quark physics

Motivation:

- Top quark is the heaviest known particle
- Yukawa coupling to Higgs boson y_t~1 → probe of EWSB
- Top quark decays before hadronizing → test of QCD
- Large loop contrib. to many precision measurements
- Sensitive to many BSM scenarios
- So far top quark only measured at hadron colliders

Results from full-simulation studies for CLIC:

- Precision on 1S-mass ~50 MeV (HL-LHC: ~500 MeV)
- ~10x higher precision on most couplings than HL-LHC

Top physics overview paper in preparation:

- mass measurement through tt threshold scan
 → 100 fb⁻¹ around √s=350 GeV
- mass measurement through reconstruction
- Electroweak couplings @ 380 GeV
- Electroweak couplings above 1 TeV
- Yukawa coupling though ttH production
- Measurement of V_{tb} in single top production
- Rare (CP violating) decays

• ...

BSM

New physics at CLIC:

- Direct searches via pair production up to $\sim \sqrt{s/2}$
- Searches for deviations from SM expectation
- Precision measurements of new particles discovered at HL-LHC

Results from full-simulation studies for CLIC:

- ~1% precision on masses and cross sections
- Measurement of spin and quantum numbers

Ongoing full-simulation BSM studies:

- Anomalous gauge couplings
- Hidden valley search
- FCNC: t→cH, t→cy

• ...

New phenomenological approaches:

- Effective theories of universal theories
- Clockwork mechanism

More on top and BSM in following talk by P. Roloff and in analysis session contributions

New CLIC detector model

forward calorimeters

New CLIC detector model CLICdet finalised:

Optimized layout (simulation studies)

Incorporates results from hardware R&D

• Implemented in new software framework

Documented in CLICdp-Note-2017-001

Major changes w.r.t. CDR models:

Only one detector

 Last beam magnet QD0 outside detector, to increase HCAL forward acceptance → slight luminosity loss (increased L*)

Fe absorber for HCAL instead of W

 More layers and more realistic material budget for tracker

CLICdp status and plans

End-coils for field shaping

> Fine grained (PFA) calorimetry, $1 + 7.5 \Lambda_i$, Si-W ECAL, Sc-FEHCAL

Silicon tracker, Forward region with compact Small strips/ large pixels Ultra low-mass vertex detector, ~25 µm² pixels Superconducting solenoid, 4 Tesla Return yoke (Fe) with muon-ID detectors R_{in}=250 mm beam pipe **HCAL** tracker **ECAL** 10

Optimization of CLIC detector model

CLICdet design based on optimization studies, e.g.:

- Endcap HCAL inner radius
 - Large impact on jet reconstruction
 → R_{in} reduced from 500 mm to 250 mm,
 implies that QD0 had to move outside detector,
 longer L* of 6 m → reduced luminosity
- ECAL depth and segmentation
 - \rightarrow 40 layers, 22 X₀ needed for good photon resolution
- Tracker radius and B-field
 - Trade-off between achievable coil radius and B-field
 → tracker radius 1.5 m and B=4 T

Physics performance for different HCAL EC radii 300 250 $-R_{in}=120 \text{ mm}$ $-R_{in}=240 \text{ mm}$ $-R_{in}=360 \text{ mm}$ $-R_{in}=36$

Validation of new CLIC detector model

Ongoing validation studies with CLICdet:

- Implementation of simulation vs. engineering model
- Check background levels
- Validate new reconstruction software
- Ensure that performance meets expectations
 - → comparison with CDR performance

Planned future performance studies:

- Flavour tagging as function of vertex-detector parameters
- Pattern recognition in presence of backgrounds

• ..

Take advantage of new flexible software chain → parametric studies

Detector alignment and calibration

- Detector alignment and calibration are essential to reach good physics performance at each energy stage
- Fast-simulation study performed:
 - Detector alignment using e⁺e⁻,e⁻γ and γγ interactions with μ final states at √s = 350 GeV in 1st year
 → ~800k useable μ's for 1 fb⁻¹
 - momentum resolution and scale using $Z \rightarrow \mu + \mu -$ and $K^0_s \rightarrow \pi^+\pi^-$ at 350 GeV
 - Flavour-tagging efficiency with e+e-→ZZ→IIqq
 need 2 years @ 350 GeV
 - Di-jet energy resolution and jet-energy scale not precise enough @ 350 GeV (W/Z confusion)
 - Additional few days (~5 pb⁻¹) at √s=91.2 GeV after 1st year:
 - Accurate momentum resolution and scale for 45.6 GeV with Z → μ+μ
 - Direct measurement of di-jet energy resolution and scale and flavour-tagging efficiency with Z→qq

More in alignment/calibration session tomorrow morning

Simulation and reconstruction software

clc

- LC community moved to common iLCsoft tools and new simulation+reconstruction chain:
 - DD4hep unified geometry description for sim.+rec.
 - DDG4/ddsim simulation
 - New reconstruction using DDRec interface
- Strong contributions from CLICdp, in particular for DD4hep, Si tracking, DDMarlinPandora PFlow

- Validation of new software ongoing, large-scale physics productions afterwards
- DD4hep also adopted by FCC, under investigation by LHCb

Distributed computing

- Physics simulation and reconstruction for CLICdp performed on the grid
- iLCDirac for managing submissions (both for central productions and end-users)
- OSG Computing Elements (HTCondor-CE, Globus) now fully integrated in Dirac
 → more sites available
- Improvements of maintenance:
 - More (Unit) Tests for Continuous Integration (CI)
 - First Centos 7 site included (Edinburgh) → allows testing of future OS
- New hardware resources: Deep Learning System based on GPUs

Vertex detector R&D

crc

- Vertex-detector requirements:
 - Ultra-thin (50 μm active silicon)
 - High spatial resolution (\sim 3 µm \rightarrow \sim 25x25 µm² pitch)
 - Precise timing (~10 ns)
- Broad R&D program on sensors, readout, powering, interconnects, mechanical integration and cooling
- Beam tests of 65 nm readout ASICs with ultra-thin fine-pitch active-edge and HV-CMOS sensors
- Prototypes of Light-weight mechanical supports and air cooling
- Second generation of sensors and r/o ASICs with improved performance currently under test
- Most challenging: position-resolution target

Capacitively coupled assembly

1:1 scale air cooling thermal test setup

CLICdp status and plans

Tracker R&D

Tracker requirements:

- Material budget 1-1.5% X0 / layer
- Spatial resolution ~7 μm
- fast timing (~10 ns)
- Has to cover ~100 m² surface area
 - → integrated sensors w. large pixels (≤ 30 µm × 1 mm)
- Evaluating prototypes in different technologies:
 SOI; depleted monolithic CMOS
- Collaboration with HL-LHC tracker upgrade projects
- Most challenging: maintain efficiency and good timing, despite large pixel area
- Mechanical integration and cooling concept for full tracker
- Prototypes for support frames constructed

Prototype of outer barrel tracker support structure

August 2016 test-beam setup in SPS-H6

AGH SOI test chip

ALICE Investigator

Overview talk on vertex/tracker by D. Hynds later in this session and contributions in tomorrow's vertex+tracker session

Calorimetry: CALICE

- R&D on HCAL/ECAL technologies for CLIC is performed within the CALICE collaboration for fine-grained particle-flow calorimetry
- Finalizing analyses for data with 1st generation "physics" prototypes
 → aim for comprehensive comparison of the various technologies
- 2nd generation prototypes under construction:
 - improved r/o technologies
 - establish scalability (embedded electronics)
 - system tests with other sub-detectors
 - first beam tests of full prototypes foreseen in 2017
- CALICE contributions to other detector (upgrade) projects, e.g.:
 - CMS-HGCAL (600m² Si sensors, 500 m² scintillators)
 - Belle II (CALICE tiles for beam monitoring)

W-A-HCAL beam test in SPS

Calorimetry: FCAL

- R&D on compact sampling calorimeters for forward regions is performed within FCAL collaboration
 - LumiCal for luminosity measurement (<±1% accuracy)
 - BeamCal for very forward electron tagging
- Evaluating different r/o technologies
 - Radiation hardness
 - Beam tests

FCAL e- shower depth profile

CLICdp status and plans

CLICdp documents for European Strategy

- Preparing for European Strategy Update for HEP in 2019
- CLICdp reports will serve as ingredients for CLIC summary report:
- Updated Baseline for a Staged Compact Linear Collider (380 GeV, 1.5 TeV, 3 TeV)
 - arXiv:1608.07537, CERN-2016-004
- Higgs Physics at the CLIC Electron-Positron Linear Collider
 - arXiv:1608.07538
- The new optimised CLIC detector model CLICdet
 - CLICdp note <u>CLICdp-Note-2017-001</u> (detector/SW validation in progress)
- An overview of CLIC top physics
 - CLIC top physics publication → complete draft before the end of 2017
- Extended BSM studies (hopefully also motivated by LHC discoveries)
 - CLIC BSM overview publication in 2018
- CLIC R&D report → with main CLIC technology demonstrators
 - Summary publication(s) in 2018
- Plan for the period ~2019-2025 in case CLIC would be supported by next strategy

Summary and Conclusions

- Strengthening the Physics case for CLIC:
 - New CLIC staging scenario with optimized Higgs and top physics program
 - Higgs physics overview paper finalized and submitted
 - Top physics overview and BSM physics overview in preparation
- Implemented new single CLIC detector model, now under validation
- Consolidation of simulation, reconstruction and distributed computing software
- Broad and active R&D on vertex and tracking technologies and calorimetry,
 with CALICE, FCAL, AIDA-2020, and in collaboration with the HL-LHC projects

Thanks to everyone who provided material for this talk!

Additional material

Detector calibration and alignment

Alignment / calibration at √s=350 GeV

- Expect ~65 pb⁻¹/day in first year
- High muon event rates (~10⁶/fb⁻¹) should allow for good detector alignment
- Jet-energy scale calibration more difficult compared to √s=91 GeV

Most promising: $e^{-} \gamma \rightarrow e^{-}q\bar{q}$ (~30k events / pb⁻¹)

 $\rightarrow \sigma(M_Z)/M_Z \sim 5x10^{-4}$ achievable for ~ 3 fb⁻¹

Calibration study for initial run period of 1 pb⁻¹ at √s=91 GeV:

- Jet-energy scale calibration:
 e⁺e⁻ → qq̄ ~30k events
 → σ(M_Z)/M_Z~2x10⁻⁴ achievable
- Tracker momentum scale calibration:
 e⁺e⁻ → μ⁺μ⁻ ~1500 events
 → σ(M_Z)/M_Z~1x10⁻⁴ achievable

√s Gev	Luminosity cm ⁻² s ¹	Luminosity Per day, pb ⁻¹	Luminosity Per day pb ⁻¹ in year-1	Luminosity Per day pb ⁻¹ in year-2
350	1.5 10 ³⁴	1300	65	325
1400	3.7 10 ³⁴	3200	160	800
3000	5.9 10 ³⁴	5100	255	1275
91.2	2.3 10 ³²	20	1	5

Expected nominal luminosities at CLIC.

At each centre-of-mass energy for the first three years the luminosity is reduced. The reduction factor is 5%, 25%, 50% for year-1, y-2, y-3.

Top quark couplings to Z/y

Expected coupling precision at HL-LHC, ILC (500 GeV) and CLIC (380 GeV)

CP-conserving couplings

CP-violating couplings

Detector requirements

→ Jet-energy resolution

e.g. W/Z/H di-jet mass separation, ZH with Z→ qq

$$\frac{\sigma_E}{E} \sim 3.5 - 5\%$$

(for high-E jets, light quarks)

→momentum resolution:

 $e.g, g_{H\mu\mu}, Smuon endpoint$

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \, \text{GeV}^{-1}$$

→impact parameter resolution:

e.g. c/b-tagging, Higgs BR

$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu \text{m}$$

- →angular coverage, very forward electron tagging
- + requirements from CLIC experimental conditions

CLIC strategy and objectives

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

