FCAL R&D towards a prototype of very compact calorimeter

Yan Benhammou

Tel Aviv University

On behalf of the FCAL collaboration

outlook

- Lumical
- 2016 test beam set up
- Signal extraction
- Energy calibration
- Noise study
- Electron photon identification
- conclusion

15.
RESUL

LumiCal in the Forward Region

Goals:

- Precise integrated luminosity measurements;
- Extend a calorimetric coverage to small polar angles. Important for physics analysis.

LumiCal	 electromagnetic calorimeter;
:	- 30/40 layers (ILC/CLIC) of 3.5 mm thick tungsten plates with
	1 mm gap for silicon sensors;
	symmetrically on both sides at ~2.5m from the interaction point.

The integrated luminosity is measured by counting number N of Bhabha events in a certain polar angle (θ) range of the scattered electron.

LumiCal Design

p+ implants in n-type bulk

Test beam setup & aims

- 8 rotated silicon planes (1/2 TAB bonding)
 - 2 planes with W : tracker
 - 6 planes starting with 3W: calo (use of charge divider)
- A lot of tungsten planes
- 16 ASD chip (2048 channels)
- DAQ system
- Mechanical box
- Telescope (six planes)
- targets

Aims

- Use a tracker in front of lumical to identify electron/photon
- 2. Add more W layers than in 2015 TB
- 3. Verify new bonding technology

Design of the Thin LumiCal Module

Thin LumiCal Module in Mechanical Frame

130 pin Panasonic connectors provides interface to APV-25 hybrid and SRS DAQ system.

Carbon fiber supporting structure ("envelope") provides mechanical stability and easy stack assembly.

- 4 modules were successfully tested with e- beam at DESY in October 2015.
- 4 additional modules were prepared for the beam test in August 2016 including one assembled with TAB bonding technology.

Saturation

 The APV is saturating for a charge greater than ~8MIP so saturation due to the e.m. shower

When saturation occurs the signal reaches maximum earlier : started to study the time bin differences to reject/recover some signals

Energy calibration

- Use the two first detectors (without W) to calibrate the energy
- Fit with landau-gauss function

Total energy deposited with charge divider

Noise study

• Study the noise for each channels and each run.

apv_13

apv_14

apv_15

Channel noise comparison

APV_id: 0, 2, 4, 6, 8, 10, 12, 14		APV_id: 1, 3, 5, 7, 9, 11, 13, 15	
L2	L1	R1	R2
16	111	16	111
17	110	17	110
18	109	18	109
19	108	19	108
20	107	20	107
21	106	21	106

LAYER 4

Collaboration

LAYER 6

Collaboration

Electron photon identification

- We produced photon using a radiator and bent the electron trajectory
- Simulation with different magnetic field value

MAX 1 : Electron Channel ~31

MAX 2: Photon Channel ~12

20 channels

difference :

~36 mm

conclusion

- Development of tools to extract the signal and reject the noise
- Energy calibration is on going
- Energy deposited with and without charge divider has been studied
- Extensive noise study : need to check in TAU the L1-R1 vs L2 R2 noise
- Electron photon identification started

Need to continue but first results are encouraging

