

CLIC Workshop 2017

Studies with the CMS Silicon Tungsten HGC Using 2016 Test Beam Data

On behalf of the CMS HGCal Test Beam Working Group

Thorben Quast

3/7/17

EE Elements Tested in 2016

	<u>Sensor</u>	<u>Absorbers</u>	Sampling layers & depth
EE	silicon	Cu, CuW, Pb	28: 25 X ₀ , ~1.3 λ
FH	si. & scint.	stainless steel	12: ~3.5 λ
BH	si. & scint.	stainless steel	12: ~5 λ
Active • Silic rad	<u>e Elements:</u> con sensor ba iation regions	ased hexagonal	modules in high-

Scintillators with SiPM readout in low-radiation region.

• Multiple modules mounted on cooling plates with electronics and absorbers.

➡Fine-grained calorimetry both for the CMS endcap calorimeter and CALICE prototypes.

Differences between the concepts:

- Radiation environment: HGCal requires cooling at -30° C.
- Collision frequency: Bunch crossing at 25ns does not allow for power pulsing.
- Pileup: Timing in HGCal critical to mitigate pileup effects.

Prototype Assembly in 2016

Module assembled as glued stack of **baseplate**, **Kapton**, **Si sensor** and **PCB**.

SKIROC2 ASIC (64 ch., 2 chips/module) Developed for CALICE.

CuW baseplate

Gold plated kapton

128 channels sensors from 6" wafers:

Si sensor

- n-type
- 1 cm² cell-size
- 200 µm depleted region

Test Beam Setups at FNAL and CERN

Common effort between CERN and FNAL in test beams 2016.

Fermilab

- Up to 16 HGC modules tested.
- Electron beam with 4-32 GeV.
- 0.6-15 X₀ absorber configuration.
- 120 GeV protons.

CERN

- Up to 8 HGC modules tested.
- Electron beam with 20-250 GeV.
- 6-15 X₀ & 5-25 X₀ absorber configurations.
- 125 GeV muons and pions.

Goals for test beams 2016:

- 1. Proof of concept of the proposed design.
- 2. Study calorimetric performance, spatial precision and timing resolution.
- 3. Comparison of results to simulation.

Beam

Event Displays for Electron Induced Showers

Fermilab: 32 GeV electrons passing through 15 X₀.

CERN: 250 GeV electrons passing through 27 X₀.

Many Studies Performed

Pedestal and noise stability:

- For each channel and as a function of time.
- Electronic gain:
 - Determine saturation in High Gain to find optimum switchover point to Low Gain.

• MIP calibration:

- With and without signal event selection using tracking techniques.

Energy reconstruction:

- Different energy reconstruction schemes studied, e.g. with and without "dE/dXweighting".
- Energy linearity and resolution.

• Shower profiles:

- Transverse shower width, e.g. through energy fractions of different energy sum radii.
- Longitudinal shower depth, e.g. through energy-weighted sum of depths.

Explore imaging capabilities:

- Spatial precision.
- Timing resolution.

Many Studies Performed

- Pedestal and noise stability:
 - For each channel and as a function of time.
- Electronic gain:
 - Determine saturation in High Gain to find optimum switchover point to Low Gain.

• MIP calibration:

- With and without signal event selection using tracking techniques.

Energy reconstruction:

- Different energy reconstruction schemes studied, e.g. with and without "dE/dX-weighting".
- Energy linearity and resolution.

Shower profiles:

- Transverse shower width, e.g. through energy fractions of different energy sum radii.
- Longitudinal shower depth, e.g. through energy-weighted sum of depths.

Explore imaging capabilities:

- Spatial precision.
- Timing resolution.

Energy Calibration with Pions

MIP calibration = response to single muons / pions / protons.

ADC count distribution for each cell:

Energy Reconstruction

Procedure:

- 1. Subtract pedestals for each cell.
- 2. Cut on cells with less than 2 MIPs in an event, exclude types with unstable noise.
- 3. Sum of energy deposits over all cells.
- 4. Correct for losses in the absorbers.

Other summing schemes were studied.

dE/dx based weighting of layer contributions.
Assumes: Ionisation dominates.

Energy Reconstruction

Procedure:

Energy Scale

CMS preliminary

(GeV)

Ы

300

250

200

150

100

50

0

- 1. Subtract pedestals for each cell.
- 2. Cut on cells with less than 2 MIPs in an event, exclude types with unstable noise.
- 3. Sum of energy deposits over all cells.
- 4. Correct for losses in the absorbers.

5 X₀ - 27 X₀

♦85% global scale

150

correction to simulation.

200

250

- sim

-- data

Other summing schemes were studied.

dE/dx based weighting of layer contributions. Assumes: Ionisation dominates.

50

100

Longitudinal Shower Depth

Shower maximum dependence on electron energy. • Shower depth = $\Sigma X_{0,layer} \times E_{layer} / \Sigma E_{layer}$.

III. Physikalische

11

Definition of Spatial Precision

Spatial precision:

Which information can be extracted from the electron data w.r.t. the shower position resolution?

Study performed on the 6 - 15 X₀ setup at CERN.

III. Physikalische

A 200 GeV electron induced shower in the third layer

Spatial Precision: Reconstruction and Results

Tune reconstruction scheme:

- Minimize residual width.
- Reduce bias towards preferred coordinates.

Evaluate widths of residual histograms:

- Both coordinates (x/y).
- All eight layers.
- All energies.

Timing Resolution

Purpose of a good timing resolution:

Initial study at FNAL.

Use precision timing of EM shower for pileup energy removal.

Reduction of impact of pileup.

Timing test with 300 µm HGC layer with fast readout:

Three Weeks of Test Beam in 2017

Three weeks of test beam scheduled.

- One week in May, June and July at CERN.
- Gradual upscaling of the system towards a full **EE** + **FH** + **BH** prototype.
 - Extend and consolidate measurements.
 - Measurements on hadron-induced showers with HGC modules.

EE+FH: ~1000kg, ~14k channels

TDR at the end of the 2017.

<u>EE:</u>

- 26 X₀, ~1 λ
- 28 layers of 6" Si hex modules

<u>FH:</u>

- •4λ
- 12 layers of 7x6" Si hex modules **BH:**
- 5 λ
- CALICE AHCAL prototype

- HGCAL EE prototype successfully constructed and operated in different absorber configurations.
- Many studies are performed.
 - ✓ Assessment of noise and its stability.
 - ✓ Energy reconstruction and resolution.
 - ✓ Shower profile measurements.
 - ✓ Studies relevant to particle flow and to pileup rejection.
- Results are still being collected.
- Comparison between data and simulation ongoing.
- Upcoming test beams with extended EE+HAD sections in 2017.

Backup

RWTHAACHEN

VERSIT

Thorben Quast - 3/7/17

9

0

III. Physikalisches Institut

CMS High-Granularity Calorimeter Upgrade

II. Physikalisch

CMS HGCal Design

	<u>Sensor</u>	<u>Absorbers</u>	Sampling layers & depth
EE	silicon	Cu, CuW, Pb	28: 25 X ₀ , ~1.3 λ
FH	si. & scint.	stainless steel	12: ~3.5 λ
BH	si. & scint.	stainless steel	12: ~5 λ

Active Elements:

- Silicon sensor based hexagonal modules in high-radiation regions.
- Scintillators with SiPM readout in low-radiation region.
- Multiple modules mounted on cooling plates with electronics and absorbers.

III. Physikalische

➡ Fine-grained calorimetry both for the CMS endcap calorimeter and CALICE prototypes.

Differences between the concepts:

- Radiation environment: HGCal requires (full) cooling at -30° C.
- Collision frequency: Bunch crossing at 25ns does not allow for power pulsing.
- Pileup: Timing in HGCal critical to mitigate pileup effects.

Test Beam Mechanics

Hanging file design for flexibile insertion of absorbers and modules on cooling plates.

20

Thorben Quast - 3/7/17

III. Physikalisches

Simulation

Standalone version in CMSSW 8.1.0. Physics list FTFP_BERT_EMM Geometry description for both configurations

Numbers at the bottom are the distances between the consecutive layers (in mm)

III. Physikalisches

Pedestal and Noise Stability

Pedestal across all channels were stable. Less than 2 ADC counts[1 MIP ~ 16.5 ADC].

• Noise stability over time across all channels were less than 2 ADC counts.

Multi-Wire Chambers in the Setup

Thorben Quast - 3/7/17

III. Physikalisches Institut

Alignment using Millepede

<u>Double peaks</u>

- \rightarrow Table has moved.
- Perform alignment for each run (comparable corrections between runs of same energy)
- Multi-wire chambers are fixed.

Note: Alignment should not influence resolution if coordinate systems are fixed within a run.

Sensor Thickness

III. Physikalisches

Sensor Testing

- Perform IV and CV measurements on "probestation"
- Contact cells temporarily via needles and sensor backside contact
- Probe-needle measurements
 - + Very flexible
 - Needle placement is time consuming
 - Need to bias also 6 neighbours cells for reliable measurement

\rightarrow Probe-card approach

- + Contact all cells with spring-loaded pins
- + Alignment and contact done once for full sensor
- + All neighbour cells biased
- + Automatic switching between cells (switching unit)
- One probe card each per sensor layout

Probe-needle measurement in probestation

See Eva's talk during FCal Workshop

