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EE Elements Tested in 2016
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Active Elements:

• Silicon sensor based hexagonal modules in high-

radiation regions. 
• Scintillators with SiPM readout in low-radiation region.

• Multiple modules mounted on cooling plates with 

electronics and absorbers.

Differences between the concepts:


•  Radiation environment: HGCal requires cooling at -30° C.

•  Collision frequency: Bunch crossing at 25ns does not allow for power pulsing.

•  Pileup: Timing in HGCal critical to mitigate pileup effects.

➡Fine-grained calorimetry both for the CMS endcap calorimeter and CALICE prototypes.

Sensor Absorbers Sampling layers & depth

EE silicon Cu, CuW, Pb 28: 25 X0, ~1.3 λ

FH si. & scint. stainless steel 12: ~3.5 λ

BH si. & scint. stainless steel 12: ~5 λ



Prototype Assembly in 2016
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CuW baseplate Gold plated kapton

Module assembled as glued 
stack of baseplate, 

Kapton, Si sensor and PCB.

128 channels sensors from 6’’ wafers:

• n-type

• 1 cm2 cell-size

• 200 μm depleted region

12.5cm

14cm

Si sensor 

SKIROC2 ASIC

(64 ch., 2 chips/module)

Developed for CALICE.

PCB



• Goals for test beams 2016:

1. Proof of concept of the proposed design.

2. Study calorimetric performance, spatial precision and timing resolution.

3. Comparison of results to simulation.

Test Beam Setups at FNAL and CERN
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Beam

Beam

Fermilab

• Up to 16 HGC modules tested.

• Electron beam with 4-32 GeV. 
• 0.6-15 X0 absorber configuration.

• 120 GeV protons.

CERN

• Up to 8 HGC modules tested.

• Electron beam with 20-250 GeV. 
• 6-15 X0 & 5-25 X0 absorber configurations.

• 125 GeV muons and pions.

• Common effort between CERN and FNAL in test beams 2016.



Event Displays for Electron Induced Showers
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CERN: 250 GeV electrons passing through 27 X0.

Fermilab: 32 GeV electrons passing through 15 X0.

e- 

32 GeV

8.5 X05 X0 12 X0 15 X0 17 X0 21 X019 X0 27 X0

15 X0

e- 

250 GeV

0.6 X0



Many Studies Performed

6Thorben Quast - 3/7/17

• Pedestal and noise stability: 
–  For each channel and as a function of time.


• Electronic gain: 
–  Determine saturation in High Gain to find optimum switchover point to Low Gain.


• MIP calibration: 
–  With and without signal event selection using tracking techniques.


• Energy reconstruction: 
–  Different energy reconstruction schemes studied, e.g. with and without “dE/dX-
weighting”.

–  Energy linearity and resolution.


• Shower profiles: 
–  Transverse shower width, e.g. through energy fractions of different energy sum radii.

–  Longitudinal shower depth, e.g. through energy-weighted sum of depths. 


• Explore imaging capabilities: 
–  Spatial precision.

–  Timing resolution.
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MIP

Energy Calibration with Pions
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MIP calibration = response to single muons / pions / protons.

CERN:

125 GeV π+ beam


ADC count distribution for each cell:

• Energy response 
intercalibration of cells. 

Gaus(μ0, σ0) +  
Gaus(μ1, σ1) ⊗ Landau(μ2, σ2)

For this cell:

Noise ~ 2.4 ADC

MIP ~ 17.9 ADC

S/N ~ 7.4

125 GeV  
π+ 

ped
es

tal
CMS preliminary CMS preliminary

Averaging

points: mean per skiroc

errors:  standard deviation

only cells with 
sufficiently high 
signal



Energy Reconstruction
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Procedure:

1. Subtract pedestals for each cell.


2. Cut on cells with less than 2 MIPs in an event, exclude types with unstable noise.


3. Sum of energy deposits over all cells.

4. Correct for losses in the absorbers.

5X0 – 27X0


data

Other summing schemes were studied.

dE/dx based weighting of layer contributions. 
Assumes: Ionisation dominates.

CMS preliminary

ΣEi [a.u.]

CMS preliminary

Reconstructed Energies Energy Scale

50 ➡ 85% global scale 
correction to simulation.


N



Energy Reconstruction
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Procedure:

1. Subtract pedestals for each cell.


2. Cut on cells with less than 2 MIPs in an event, exclude types with unstable noise.


3. Sum of energy deposits over all cells.

4. Correct for losses in the absorbers.

Other summing schemes were studied.

dE/dx based weighting of layer contributions. 
Assumes: Ionisation dominates.

CMS preliminary

Energy Resolution

Da
ta

/S
im

100%

130%

70%

Configuration was not optimised 
for energy resolution.

CMS preliminary

Energy Scale

➡ 85% global scale 
correction to simulation.




Longitudinal Shower Depth
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CMS preliminary[a
.u

.]

CMS preliminary

Deposited energy per layer

5X0 – 27X0


data

Shower Depth

5X0 – 27X0


data

➡Shower maximum dependence on 
electron energy.

• Shower depth

= Σ X0,layer x Elayer / Σ Elayer .


data     sim

N



Definition of Spatial Precision
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Spatial precision:

Which information can be extracted from the electron                                                    
data w.r.t. the shower position resolution?

Study performed on the

6 - 15 X0  setup at CERN.
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A 200 GeV electron induced shower in the third layer
Impact position reconstruction:


Option A: 

most intense cell


Option B: 

xweight ~ Σilayer w(Ei) × xi

What is the 
shower’s main 

impact position ?

Residuals:

- Widths as spatial resolution.

Comparison to extrapolation 
from straight line fit to       

delay wire chamber reference.

Expect better resolution than cell diameter/√12.



Spatial Precision: Reconstruction and Results
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Tune reconstruction scheme:

• Minimize residual width.

• Reduce bias towards preferred coordinates.

Evaluate widths of residual histograms:

• Both coordinates (x/y).

• All eight layers.

• All energies.

Spatial resolution after 6 X0

Analysis in progress.

CMS preliminary

 

<

<



Timing Resolution
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Purpose of a good timing resolution:

Use precision timing of EM shower for pileup energy removal.

➡ Reduction of impact of pileup.

Initial study at FNAL.

Timing test with 300 μm HGC layer with fast readout:

Comparison of time stamps in HGC 
timing layer vs. Photek MCP-PMT

Results with 32 GeV e- test beam:

➡ Precision around 16ps.

➡ Scaling with S/N.

Energies up to 250 GeV at CERN last November:

•  Analysis ongoing.

•  Expect better resolution with higher S/N, usage of 

multiple cells.

FNAL beam



Three Weeks of Test Beam in 2017
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Three weeks of test beam scheduled.

• One week in May, June and July at CERN.

• Gradual upscaling of the system towards a full EE + FH + BH prototype.


TDR at the end of the 2017.

➡ Extend and consolidate measurements.

➡ Measurements on hadron-induced showers with HGC modules.

EE: 
• 26 X0, ~1 λ

• 28 layers of 6” Si hex modules

FH: 
• 4 λ

• 12 layers of 7x6” Si hex modules

BH: 
• 5 λ

• CALICE AHCAL prototype

Beam

EE+FH: ~1000kg, ~14k channels



Summary
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• HGCAL EE prototype successfully constructed and operated in different 
absorber configurations.


• Many studies are performed.

✓ Assessment of noise and its stability.

✓ Energy reconstruction and resolution.

✓ Shower profile measurements.

✓ Studies relevant to particle flow and to pileup rejection.


• Results are still being collected.

• Comparison between data and simulation ongoing.


• Upcoming test beams with extended EE+HAD sections in 2017.



Backup
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CMS High-Granularity Calorimeter Upgrade
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Key parameters: 
• 1.5 < |η| < 3.0

• ~600 m2 silicon

• ~6 M channels, 

0.5 or 1cm2 cell-
size 1034 cm-2 s-1 

1035 cm-2 s-1 
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HL-LHC ConditionsDetector designed for radiation dose equivalent to 300fb-1.

➡ Replacement of CMS’ complete endcap calorimetry  

during HL-LHC upgrade.



CMS HGCal Design
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Active Elements:

• Silicon sensor based hexagonal modules in high-radiation 

regions.

• Scintillators with SiPM readout in low-radiation region.

• Multiple modules mounted on cooling plates with electronics 

and absorbers.

Sensor Absorbers Sampling layers & depth

EE silicon Cu, CuW, Pb 28: 25 X0, ~1.3 λ

FH si. & scint. stainless steel 12: ~3.5 λ

BH si. & scint. stainless steel 12: ~5 λ

➡ Fine-grained calorimetry both for the CMS endcap calorimeter and CALICE prototypes.

Differences between the concepts:


•  Radiation environment: HGCal requires (full) cooling at -30° C.

•  Collision frequency: Bunch crossing at 25ns does not allow for power pulsing.

•  Pileup: Timing in HGCal critical to mitigate pileup effects.



Test Beam Mechanics
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Simulation
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Standalone version in CMSSW 8.1.0. 
Physics list FTFP_BERT_EMM 

Geometry description for both configurations 



Pedestal and Noise Stability
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Multi-Wire Chambers in the Setup
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• Independent DAQs for MWCs & HGC.

Beam
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Alignment using Millepede
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Double peaks  
➡ Table has moved. 
➡ Perform alignment for each 
run (comparable corrections 
between runs of same energy) 

•  Multi-wire chambers are 
fixed. 

Note: Alignment should not 
influence resolution if coordinate 
systems are fixed within a run.
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Sensor Thickness
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Sensor Testing
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• See Eva’s talk during FCal Workshop

https://indico.cern.ch/event/580557/contributions/2488325/attachments/1422115/2180035/EvaSicking_HGCalSensorTesting.pdf

