Results with the ALICE CMOS investigator chip

Magdalena Munker (CERN, University of Bonn)

Dominik Dannheim (CERN) Andreas Nurnberg (CERN)

CLICdp collaboration meeting

March 9th 2017

MARGARED BY THE

and Researcl

Outline

- Motivation of monolithic technology for the CLIC tracker
- The ALICE Investigator Chip
- Test-beam:
	- Setup
	- Analysis
	- **Results**
- Simulation
- Summary & outlook

Large surface silicon tracker planned for CLIC (~ 100m2):

Need of large scale production

Benefit from monolithic technologies:

- Electronics integrated in sensor
- No separate readout chip
- No need of bump bonding
- Reduced material budget

Benefit from synergies with ALICE collaboration:

- Test-chip developed within ALICE collaboration to investigate full analogue performance of monolithic technology chosen by ALICE
- Interesting to study feasibility of technology chosen by ALICE with respect to CLIC tracker requirements (time slicing of 10 ns, single point resolution of \sim 7 μ m)

CLIC tracker layout:

 $\boldsymbol{\omega}$ \Rightarrow

The ALICE Investigator chip **(***W. Snoeys, J.W. van Hoorne et. al.***)**

Monolithic HR-CMOS process:

- Developed as part of ALPIDE development for ALICE ITS upgrade
- 180 nm High Resistivity (HR) CMOS process, 15-40 μm thick epitaxial layer (1-8 kΩcm)

of **modified process**:

Two different submissions, changes in 2nd submission to achieve full depletion of epitaxial layer:

Schematic of process cross section

Schematic of process cross section of **standard process**:

Test chip:

- Different mini-matrixes with 8x8 pixels
- Various pixel layouts to optimise the collection-diode geometry:
	- Minimise capacitance (\sim 2 fF) \leftrightarrow fast timing (\sim ns)
- External readout board (*designed by K. M. Sielewicz*)
- 64 ADCs to read out full waveform of 8x8 pixel matrix
- 65 MHz sampling clock limits achievable timing resolution

ALICE INVESTIGATOR integrated in CLICdp Timepix3 telescope at SPS beam-line:

Benefit from good timing & spatial resolution of Timepix3 telescope:

- Timing resolution \sim ns
- Single point tracking resolution on DUT \sim 2 μ m

Test-beam setup: Synchronisation of Investigator & telescope data:

Time

If at least one pixel crosses a threshold of $signal/noise > 8$

- Store waveform from all pixels
- Sent time stamp to telescope planes
- Used for offline synchronisation

Investigator event reconstruction:

- Signal defined as magnitude of amplitude drop
- Noise defined as RMS of fluctuation around baseline
- Cut on $S/N > 5$ for each single pixel
- Fit exponential function f(t) to waveform of each pixel to extract exact timing and signal:

Time [65 MHz] 330 340 350 3<u>6</u>0 3<u>70</u> 380 Amplitude [ADC] 4800 5000 5200 5400 5600 0
5800
<u><</u> Example of pixel waveform fit: Pedestal Signal Hit time

Quality cuts:

- Distance between track and Investigator hit < 2 pixel
- Masking of half of edge pixels

Investigation of track position in pixel for different cluster sizes to study charge sharing on sub pixel level:

Geometrical expectation:

Results for pixel size 28 μm, bias voltage 6 V, 25 μm epi-thickness, modified process:

Seed threshold \sim 140 e, neighbor threshold \sim 50 e

- Benefit from good tracking resolution of CLICdp Timepix3 telescope
- →

Spatial & timing resolution

Results for pixel size 28 μm, bias voltage 6 V, 25 μm epi-thickness modified process:

Seed threshold \sim 140 e , neighbor threshold \sim 50 e

- Spatial reconstruction by charge interpolation and η-correction to correct for non-linear charge sharing
- Charge sharing leads to improved spatial resolution of ~ 6 µm (binary expectation ~ 8 µm)
- Timing residual determined by difference between hit time of first pixel in cluster and mean track time
- Timing resolution of \sim 5 ns (note: limited by sampling frequency of 65 MHz)
- *Spacial & timing resolution well within requirements for CLIC tracker (external readout)*

Efficiency

Results for pixel size 28 μm, bias voltage 6 V, 25 μm epi-thickness modified process:

Seed threshold \sim 140 e , neighbor threshold \sim 50 e

If a track is reconstructed through the Investigator:

- If Investigator hit within distance of 2 pixels from track
	- \rightarrow Count 1 for efficiency
- If NO Investigator hit within distance of 2 pixels from track \rightarrow Count 0 for efficiency
- Histogram filled at local track position extrapolated on Investigator

Global efficiency of \sim 99.3 % (after masking of half of edge pixels, study ongoing)

Good performance in full phase space

Results for pixel size 28 μm, bias voltage 6 V, 25 μm epi-thickness modified process:

Calibration with Fe-source applied to convert threshold to e-

Need low threshold to gain in resolution and be fully efficient

Results for pixel size 28 μm, 25 μm epi-thickness modified process:

Calibration with Fe-source applied to convert threshold to e-

- No significant changes in efficiency
- Lower cluster size and worse resolution for low bias:

- due to higher input capacitance for lower voltage
- No significant changes in signal
- Higher cut on signal/noise
- Less charge sharing for lower bias because of higher threshold

Need high bias to achieve low noise to be able to push the threshold to low values and gain in resolution →

Comparison of two different submissions

Changes in second submission to achieve full depletion:

- Expect that less diffusion results in lower cluster size & faster timing
- *Despite thicker epi layer for modified process, lower cluster size and faster timing compared to standard process*

Magenta = main different parameters

2 dimensional simulation of standard process

Simulation chain:

3. Fast model of threshold application, energy fluctuations, telescope resolution and reconstruction

Comparison of 3d-data and 2d-simulation:

Observation:

- Charge sharing in X does not change significantly along Y dimension of pixel
- Can compare X-cluster size in pixel and X-residual between data and simulation (*approximation*)

Comparison of simulation & data, pixel size 28 μm, bias voltage 6 V, 18 μm epi-thickness standard process:

Seed threshold \sim 200 e , neighbor threshold \sim 70 e

- Calibration applied to define threshold in simulation
- *Good agreement of simulation in X residual and in-pixel X cluster size*

Summary & outlook

Investigator HR-CMOS process studied in various test-beam campaigns:

- Charge sharing on in-pixel level well understood
- Bias and threshold scan performed
- Qualitative comparison of different submissions
- Overall performance meeting requirements for CLIC Tracker:
	- Single point resolution \sim 6 μ m
	- Efficiency \sim 99.3 % (study ongoing)
	- Timing resolution \sim 5 ns
- Results for modified process 28 μm pixel size Test-chip with external readout
- Studies used as input for design of fully monolithic tracker chip for CLIC (see Iraklis talk in this session: *An overview of CMOS sensor technologies for CLIC*)

Simulation of standard process:

- Validated with test-beam data ongoing, good agreement so far
- Can be used to investigate performance for different pixel layouts

