PAUL SCHERRER INSTITUT

Paolo Craievich on behalf of RF group - Paul Scherrer Institut

RF activities for SwissFEL

High-Gradient applications outside particle physics, CLIC Workshop, 6-10 March 2017

- □ Some RF activities in SwissFEL
 - 2.5 cell S-band RF gun
 - Status of C-band linac
- □ Consolidation of the RF technology at PSI
 - CERN-PSI X-band accelerating structures
 - Post-undulator X-band Transverse Deflecting Structures
 - \rightarrow ongoing collaboration between CERN-PSI-DESY
- □ RF Travelling-Wave Electron Guns

		ARAMIS
Main parameters		Hard X-ra
Wavelength from	0.1 nm–6 nm	Linear po
Photon energy	0.2-12 keV	First Pilot
		Operatio
Pulse duration (rms)	2 fs - 30 fs	ATHOS – Be
e ⁻ Energy (0.1 nm)	5.8 GeV	Soft X-ray
e ⁻ Bunch charge	10-200 pC	Variable
e bunch charge	10-200 pc	2 nd const
Repetition rate	100 Hz	Operatio

- - - -

Hard X-ray FEL, λ=0.1 - 0.6 nm (12-2 keV)
Linear polarization, variable gap, in-vacuum undulators
First Pilot Experiment by End 2017 (SASE)
Operation modes: SASE & self seeded
THOS – Beam Energy 2.78 – 3.22 GeV
Soft X-ray FEL, λ=0.6 - 6.0 nm (2-0.2 keV)
Variable polarization with Apple-X undulators (2 m length)
2 nd construction phase 2017 – 2020
Operation modes: SASE & self seeded & many more

2.5 cell S-band RF gun

- Best design features from LCLS and CTF/PHIN RF guns adopted
- Machined "on tune" according to HFSS
- No tuning plungers
- No tuning step during machining
- Quadrupole compensated symmetric coupler
- Load lock chamber
- Δ β=2

f	[GHz]	2.9988
Δf	[MHz]	15
$E_{\rm acc,0}$	[MV/m]	100
Emax	[MV/m]	100
Pin	[MW]	18
$\Delta t_{\sf RF}$	[ns]	1000
P_{diss}	[kW]	0.9

RF and mechanical design: PSIFine machining cavities : VDLPre-machining & brazing: PSI workshop

RF conditioning at SITF

Blue lines: RF power Green: vacuum pressure

Vacuum suitcase connected to the load-lock, showing the cathode transfer principle and the storage carroussels..

First beam August 24, 2016

Reference performances

(Q = 200 pC and E_{cath} =100MV/m)

SwissFEL		SITF	
	Sim.	Sim.	Meas.
[MeV]	6.6	6.6	6.6
[A]	20	20	20
[µm]	0.21	0.26	0.28
[µm]	0.144	0.18	0.20
$[TA/m^2]$	450	300	260
$[TA/m^2]$	965	620	500

-

SwissFEL C-Band module

	•		Main LINAC	#
- Internet			LINAC module	26
			Modulator	26
	PROFT L		Klystron	26
			Pulse compressor	26
			Accelerating structure	104
			Waveguide splitter	78
C-I	band-klystron	łz	Waveguide load	104
BOC pulse fo compressor 2	ur 2 m long C-band structu 20 MeV energy gain per m	ares, 28 MV/m hodule (+10% overh Some overhouse of the second sec	nead)	

[] Installation of last Linac girder: Sept. 13, 2016

C-band structures: ultra-precision machining

Typical examples of metrology on a structure: top histogram iris diameter, bottom histogram iris cell diameter

- Structures are machined "on tune", no provisions for dimple tuning!
- Cup manufacturing with micron precision at VDL ETG Switzerland
- Coupler manufacturing at VDL ETG
- Stacked by robot at PSI
- Vacuum-brazed at PSI
- Production rate: 1-2 / week
- Production finished August 2016
- High power results for first structure:
 - \rightarrow Conditioned to 52 MV/m
 - → Break-down rate at 52 MV/m $\approx 2 \times 10^{-6}$
 - → At nominal 28MV/m, break-down rate negligible (well below the specified threshold of 10⁻⁸)

R. Zennaro et al.,

"Measurement and High Power Test of the First C-Band Accelerating Structure for SwissFEL", Proceedings of LINAC2014, Geneva, Switzerland

Pulse compressor, max. gradient and bead-pull

No tuning steps from the cups production to the installation into the bunker.

References: R. Zennaro and A. Citterio

Temperature distribution @5712 MHz

 $\Delta 1^{\circ}$ C = 0.75 μ m @ ~44mm cell diameter

- Two prototypes were tested at PSI for evaluation of the series. \checkmark
- ✓ 50 MW / 3µs RF, 370kV / 344A / <20 ppm voltage stability pulse to pulse @ 100 Hz

AMPEGON

Type-µ modulator prot. for PSI C-band K2-3 proto. for PSI C-band

- 13 modulators (Linac 1, Linac 2)

ScandiNova

andiNova

- ✓ Progressive increase of beam energy to final energy of 5.8 GeV
- First Pilot Experiments by End 2017 (requested 3 GeV beam) \checkmark

Conditioning of first C-band module

(50 MW, 3 μs, full compression)

SwissFEL energy gain scheme based on BOC performances:

- Linac 1 with phase modulation operation: on-crest energy gain of 52 MeV/structure (~26 MV/m) @40 MW from klystron.
- Linac 2 and 3 with phase jump operation: on-crest energy gain of 58 MeV/structure (~29 MV/m) @36 MW from klystron.

References: R. Zennaro, F. Löhl et al.

Consolidation of the RF technology at PSI

- PSI has developed a production line of high technological content for high-quality, high-gradient C-band accelerating structures for the SwissFEL project.
- PSI is interested in extending, consolidating and broadening its know-how to Sband and X-band frequencies
 - \rightarrow RF group is establishing international collaborations on different topics:
 - CERN-PSI: development of X-Band high-gradient accelerating structures structures in tuning-free C-band design;
 - CERN-DESY-PSI: development of innovative X-band tuning-free transverse deflecting structure with a novel variable polarization feature, *also see B. Marchetti's talk.*
 - FERMI@Elettra-PSI: development of S-band high-gradient accelerating in tuning-free C-band design, see C. Serpico's talk held on Monday.
- Consolidation of the exiting C- band technology in accelerators applications: development of C-band traveling-wave photo guns for the SwissFEL project and for a multipurpose photo-injectors.

27 cells + input couplers ($2\pi/3$)

- □ Tolerances on the drawing is $\pm 2 \mu m$ (iris aperture and cell diameter (R_a = 25 nm).
- Parts are all fabricated (by VDL)
- □ Assembling and brazing at PSI
- **2** structures:
 - ✓ first one ready for high-power tests at CERN
 - ✓ second one is brazed and vacuum tight and ready for bead-pull measurements at CERN.

First X-band accelerating structure

Working frequency is 29°C (design 30°C) Matching is at -30 dB level.

Courtesy of Rolf Wagner (CERN)

Post-undulator X-band TDS for Athos beamline

Resonant kicker

Septum (28 ns)

Reference for post-undulator TDS: C. Behrens et al., "Few-femtosecond time-resolved measurements of X-ray free electron laser", Nat. Comm. 4762 (2014).

β [m]

Beam parameters and measurement concept

Parameter	Value	Unit	
e⁻ charge	10 - 200	рС	
Peak current	2-3	kA	
Pulse duration	2 - 30	fs (rms)	
e ⁻ Energy	≤ 3.5	GeV	
Emittance	≤ 300	nm	
Energy spread	≤ 350	keV	
X-band TDC			

Beam measurements:

- □ Slice emittance on both planes
- Projected emittance on both planes
- Electron and photon pulse length
- Energy spread induced by FEL process

- $\beta_x = \beta_y = 50 \text{ m} \rightarrow \text{optics for both polarizations}$
- Energy resolution
 - □ Due to betatronic effect < 180 keV (beam size)
 - Due to screen resolution = 150 keV
 - □ But TDC induces energy spread!

Resolution, induced energy spread and jitter

$$\sigma_{t,res} = \frac{\sqrt{\varepsilon_N} \cdot E_0 \cdot \sqrt{\gamma}}{\sqrt{\beta_y} \cdot \sin \Delta \psi_{ds} \cdot eV_\perp \cdot c \cdot k_{rf}}$$

Resolution 0.95 fs @45MV and β_d = 50 m Resolution 0.71 fs @60MV and β_d = 50 m

RF stability – X-band linearizer

Typical rf stability figures (rms values) over one hour of operation for all rf stations operated at the SITF [1]:

rf station	Amplitude	Phase	
S-band:			_
FINSS (rf gun)	1.3×10^{-4}	0.020°	
FINSB01	1.4×10^{-4}	0.030°	0 0100
FINSB02	1.2×10^{-4} 1 80-4	0.027°	0.018
FINSB03/04	2.1×10^{-4}	0.032°	
X-band:			
FINXB ^a	2.1×10^{-3}	0.17°	0.072°

^a Limited by klystron pre-amplifier stability.

Pre-amplifier: Advance System Engineering, Model 174 X TWT

Specifications for the SwissFEL:

Frequency band	Frequency [MHz]	RF tolerance / phase noise (rms) [fs] / [°]	ref. distr. phase noise performance (rms) [fs] / [°]	max. added phase noise vec. mod. (rms) [fs] / [°]	max. allowed added phase noise pre-amplifier / (klystron/HV mod.) (rms) [fs] / [°]	required HV modulator stability (rms)
X-band	11995.2	16.7 fs / 0.072°	3.5 fs / 0.015°	6.1 fs / 0.026°	10.7 fs / 0.046°	< 29 ppm

[1] T. Schietinger et al., "Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility", PR AB (2016)

Ref.: T. Schilcher

Ongoing collaboration for X-band TDS

- □ Establishing a collaboration between CERN, PSI and DESY
- □ TDS with a novel variable polarization feature
 - \rightarrow tuning may be difficult because a tight symmetry is required!
- RF design by A. Grudiev in CLIC-note-1067 (2016)
- □ First prototype with tuning-free assembly procedure developed at PSI
- □ Eventually starting with the series for PSI and DESY applications

Courtesy of A. Grudiev

Variable Polarization Circular TE11 Mode Launcher

First concept based on CERN Xbox3 system with a 6 MW Toshiba klystron, Scandinova K200type modulator (1.6mx1.3m), SLED system and waveguide components

RF Travelling-Wave Electron Gun

- Motivation: exploring new designs of electron source at C-band frequency that could represent a future upgrade of the SwissFEL injector.
- Constrains: possible beam dynamics improvements were investigated by substituting only the electron gun and the relative solenoid while leaving the rest of the injector (downstream of the first booster structure) almost unchanged.

Setup SwissFEL Gun 1		C-Band SW Gun	C-Band SW Gun C-Band TW Gun		
		reference		60°	120°
E_{kin}	[MeV]	6.6	9.8	12.0	12.7
I _{peak}	[A]	20	41	48	41
$\varepsilon_{x,n}$	[µm]	0.21	0.22	0.21	0.22
$\bar{\varepsilon}_{x,n}$	[µm]	0.14	0.17	0.13	0.15
$ar{\zeta}$		1.14	1.03	1.13	1.09
$B_{\sf n}$	$[TA/m^2]$	450	850	1050	870
$ar{B}_{\sf n}$	$[TA/m^2]$	965	1480	2940	1840
f _p		-1	-1.5	-2.0	-1.4

RF in

RF in

- Brightness a factor 3 higher than the SwissFEL
- Peak current a **factor 2** higher than SwissFEL gun
- Very conservative value of the field at cathode (135 MV/m with a filling time < 100 ns)

RF out RF out RF out RF out RF out

C-band RF Travelling-Wave Electron Gun

An innovative coaxial RF coupling from the cathode side enables

- the placement of the focusing solenoid around the cathode with a simplified magnet design that integrates main and bucking coil
- □ the elimination of the quadrupole components of the RF fields in the region where the beam is accelerated
- the introduction of gaps with vanishing RF fields, making the gun compatible with the load-lock system without the need of special RF contacts

C-band TW Gun	
Frequency	5.712 GHz
Phase advance per cell	60 deg/120 deg
# cells	21/10
Structure length	215/220 mm
Q	4700/10000
Filling time	73/90 ns
Iris radius	5.5 mm
Group velocity	0.95/079 % of [c]
Nominal gradient	135 MV/m
Nominal power	57.9/37.4 MW
Repetition rate	100 Hz

M. Schaer et al., PR AB 19, 072001 (2016).

Multipurpose C-band TW photo-injector

- Development of an innovative and compact C-band traveling-wave photo injector based on the C-band accelerating structures 2-m long
- This project is part of the consolidation of the exiting C- band technology in accelerators applications (RF photo-injectors for free-electron lasers, synchrotron light source, timeresolved electron diffraction, and advanced accelerator concepts)

Length (m)	2.108
Number of accelerating cells	113
Phase advance/cell (deg)	120
Frequency (GHz)	5.712
Repetition rate (Hz)	100
Filling time (ns)	330
Gradient (MV/m)	20
Max. field at cathode (MV/m)	80
Output beam energy (MeV)	42
Input power (MW)	20

Details of the input coupler and cathode plug

Preliminary simulations:

Bunch charge	0.1pC	15pC	150pC
Bunch Length	<20fs	4ps	5 ps
Energy spread	15keV	30keV	70keV
Emittance	<0.1urad	<0.1urad	<2.5uad

Ref.: R. Zennaro and L. Stingelin

Status of the SwissFEL linac

- Progressive increase of beam energy to final energy of 5.8 GeV
- First Pilot Experiments by End 2017 (requested 3 GeV beam)

Pathway towards a consolidation of the RF technology at PSI

- X-band high-gradient accelerating structures (CERN-PSI)
- X-band TDS for the characterization of ultra-short bunches (CERN-PSI-DESY)
- S-band high-gradient accelerating structures (FERMI-PSI)
- C-band Travelling-wave photo-guns

Acknowledgements

□ Special thanks to the colleagues at PSI:

✓ R. Zennaro, A. Citterio, L. Stingelin, M. Pedrozzi, F. Löhl, M. Bopp,
E. Prat, S. Reiche et al.

- and to the colleagues from CERN and DESY working on X-band TDS collaboration, in particular:
 - ✓ A. Grudiev, W. Wuensch, N. Catalan Lasheras, G. Mcmonagle (CERN)
 - ✓ B. Marchetti, F. Christie, R. D'Arcy, D. Marx (DESY)

Thank you for the attention!!