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§ It is often said…

“W pair production measures triple gauge couplings (TGCs)…”
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§ But there can be other new physics effects!

§ How do we know we are measuring the TGC vertex?
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§ Common lore:

“We are measuring TGCs because other new physics effects 
are constrained to be very small by electroweak precision 
data (EWPD). So if there is any new physics showing up in W 
pair production, it should be dominated by anomalous TGCs.”

§ We shall call this the TGC dominance assumption.

§ This underlies TGC interpretation of W pair production.

§ Is it valid?

§ Will it be valid forever?

§ If not, what should we do?
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§ Effective field theory (EFT) as a tool to critically assess 
the validity of the TGC dominance assumption.

§ From LEP to LHC: TGC interpretation of W pair production 
used to be justified, but is not any more!

§ Going beyond TGC framework to learn more about new 
physics from current and future data.
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§ New physics could be anything.

§ But at energies much lower than new particle masses 𝛬,

§ Dimension-6 effective operators (dominant new physics effects).
§ Higher-order terms (usually less important).

§ Theory prediction for observables

§ Data à EFT operator coefficients (ci) à infer new physics.
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SM

�
1 + �(ci)

�



§ At tree level, the following dimension-6 operators 
contribute to                   :

§ Notation: F = q, l; f = u, d, e.

§ I have adopted the Warsaw basis. 
§ Physics is basis-independent.
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§ Anomalous TGCs

§ W boson mass shift

§ Zff, Wff’ vertex corrections [ f’ = SU(2)L partner of f ]

Each anomalous coupling is a function of operator coefficients.
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Number of independent parameters:

§ 3 anomalous TGCs

§ 1 W boson mass shift

§ 3+4 (leptonic+hadronic) Zff, Wff’ vertex corrections
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TGC dominance assumption = 

§ The additional 1 + (3+4) parameters are very constrained by 
EWPD, and can be neglected in W pair production.

§ Therefore, W pair production can be interpreted as probing 
the 3 anomalous TGCs.

“How good is this assumption?”

§ We focus on the following observables:

§ at LEP2  [LEP2 report, 1302.3415]

§ leading lepton pT at 8TeV LHC  [ATLAS, 1603.01702]
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We compare:

§ anomalous TGC effects considered in conventional TGC fits

vs.

§ possible effects from other 8 anomalous couplings which 
are neglected in conventional TGC fits.

In particular, we set each parameter to its 2σ upper bound.
§ TGCs from: [LEPEWWG/TGC/2002-02] [Butter, Eboli, Gonzalez-Fraile, 

Gonzalez-Garcia, Plehn, Rauch, 1604.03105].
§ EWPD constraints from: [Falkowski, Riva, 1411.0669].

See also: Pomarol, Riva, 1308.2803; Ellis, Sanz, You, 1410.7703; Ellis, You, 
1510.04561; Berthier, Bjørn, Trott, 1606.06693; Falkowski, Gonzalez-Alonso, 
Greljo, Marzocca, Son, 1609.06312; Ellis, Roloff, Sanz, You, 1701.04804.
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§ Interpreting W pair production as TGC measurements was
justified by EWPD at LEP2, but is not at the LHC.

“Will the situation hold in the future?”
“How about a future lepton collider such as CLIC?”
“If TGC interpretation fails, what should we do?”
…

To address these questions, let’s first understand: 

§ What makes the difference between LEP2 and LHC?

CERN CLIC Workshop, March 2017Zhengkang Zhang (U. Michigan & DESY) 13



What makes the difference between LEP2 and LHC?

§ Z couplings to (RH) quarks are less constrained + Zàbb anomaly.

§ Effects constrained by EWPD are enhanced at higher energy, e.g.

How to understand this high-energy behavior?

§ Goldstone equivalence theorem + dimensional analysis.
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§ Important operators here are of the form

§ Higgs fields take their Goldstone components rather than vev.

§ Note: This type of operators also contributes to                        , 
but their effects are not enhanced at high energy because 
|H|2 à v2/2 (so Drell-Yan does not help!)
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“So the situation will hold in the future, as we continue to 
explore the high-energy frontier.”
See also Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer, 
1609.08157 for similar discussion.

§ It is time to update the way we perform EFT analyses. 

§ To take better advantage of high-energy data to learn about 
new physics, we need a more complete picture of EFT.

[Grojean, Montull, Riembau, ZZ, to appear]
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§ Interpretation of W pair production as TGC measurements 
is based on the TGC dominance assumption.

§ This assumption was justified by EWPD for LEP2, but is 
already challenged by recent LHC data.

§ Going to higher energy changes the way we should think 
about EFT and new physics.

§ It is time to go beyond TGC interpretation. High-energy 
data at present (LHC) and in the future (CLIC etc.) require 
a more complete treatment of all EFT parameters.
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