Time to go beyond Triple-Gauge-Coupling interpretation of W pair production

Zhengkang Zhang (U. Michigan & DESY)

Based on:

• ZZ, Phys.Rev.Lett.118,011803, arXiv: 1610.01618

See also: Grojean, Montull, Riembau, ZZ, to appear

Introduction

It is often said...

"W pair production measures triple gauge couplings (TGCs)..."

But there can be other new physics effects!

- How do we know we are measuring the **TGC vertex**?

Introduction

Common lore:

"We are measuring TGCs because other new physics effects are constrained to be very small by electroweak precision data (EWPD). So if there is any new physics showing up in W pair production, it should be dominated by anomalous TGCs."

- We shall call this the **TGC dominance assumption**.
- This underlies TGC interpretation of *W* pair production.
 - Is it valid?
 - Will it be valid forever?
 - If not, what should we do?

This talk

- **Effective field theory (EFT)** as a tool to critically assess the validity of the TGC dominance assumption.
- From LEP to LHC: TGC interpretation of W pair production used to be justified, but is **not any more**!
- Going beyond TGC framework to learn more about new physics from current and future data.

Effective field theory (EFT): organization of new physics effects

- New physics could be anything.
- But at energies much lower than new particle masses Λ ,

$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\sum_{i} c_i \frac{\mathcal{O}_i}{v^2}}_{i} + \underbrace{\dots}$$
 where $c_i \sim \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)$

- Dimension-6 effective operators (dominant new physics effects).
- Higher-order terms (usually less important).
- Theory prediction for observables

$$\hat{\mathcal{O}}_{\text{theory}} = \hat{\mathcal{O}}_{\text{SM}} (1 + \delta(c_i))$$

- Data \rightarrow EFT operator coefficients (c_i) \rightarrow infer new physics.

W pair production in EFT

- At tree level, the following dimension-6 operators contribute to $f\bar{f} \rightarrow W^+W^-$:

$$\begin{aligned} \mathcal{O}_{HWB} &= H^{\dagger} \sigma^{a} H W_{\mu\nu}^{a} B^{\mu\nu}, \quad \mathcal{O}_{HD} = |H^{\dagger} (D_{\mu} H)|^{2}, \\ \mathcal{O}_{3W} &= \epsilon^{abc} W_{\mu}^{a\nu} W_{\nu}^{b\rho} W_{\rho}^{c\mu}, \quad \left[\mathcal{O}_{ll}\right]_{ijkn} = (\bar{l}_{i} \gamma_{\mu} l_{j}) (\bar{l}_{k} \gamma^{\mu} l_{n}), \\ \left[\mathcal{O}_{HF}^{(3)}\right]_{ij} &= i \left(H^{\dagger} \sigma^{a} (D_{\mu} H) - (D_{\mu} H^{\dagger}) \sigma^{a} H\right) (\bar{F}_{i} \gamma^{\mu} \sigma^{a} F_{j}), \\ \left[\mathcal{O}_{HF}^{(1)}\right]_{ij} &= i \left(H^{\dagger} (D_{\mu} H) - (D_{\mu} H^{\dagger}) H\right) (\bar{F}_{i} \gamma^{\mu} F_{j}), \\ \left[\mathcal{O}_{Hf}\right]_{ij} &= i \left(H^{\dagger} (D_{\mu} H) - (D_{\mu} H^{\dagger}) H\right) (\bar{f}_{i} \gamma^{\mu} f_{j}), \end{aligned}$$

• Notation: F = q, l; f = u, d, e.

- I have adopted the Warsaw basis.
 - Physics is basis-independent.

New physics effects from dimension-6 operators

- Anomalous TGCs
$$\mathcal{L}_{TGC} = ig \left\{ (W^+_{\mu\nu}W^{-\mu} - W^-_{\mu\nu}W^{+\mu}) \left[(1 + \delta g_{1z}) c_{\theta} Z^{\nu} + s_{\theta} A^{\nu} \right] \right.$$

 $\left. + \frac{1}{2} W^+_{[\mu,} W^-_{\nu]} \left[(1 + \delta \kappa_z) c_{\theta} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta} A^{\mu\nu} \right] \right.$
 $\left. + \frac{1}{m_W^2} W^{+\nu}_{\mu} W^{-\rho}_{\nu} \left(\lambda_z c_{\theta} Z^{\mu}_{\rho} + \lambda_{\gamma} s_{\theta} A^{\mu}_{\rho} \right) \right\}$

- W boson mass shift $\mathcal{L}_{m_W} = (1 + \delta_m)^2 \frac{g^2 v^2}{4} W^+_\mu W^{-\mu}$
- *Zff, Wff* vertex corrections [f' = SU(2)_L partner of f]

$$\mathcal{L}_{\text{vertex}} = \sum_{f} \frac{g}{c_{\theta}} \left((T_{f}^{3} - Q_{f} s_{\theta}^{2}) \delta_{ij} + \left[\delta g_{L/R}^{Zf} \right]_{ij} \right) Z_{\mu} \bar{f}_{i} \gamma^{\mu} f_{j}$$
$$+ \frac{g}{\sqrt{2}} \left[\left(\delta_{ij} + \left[\delta g_{L}^{Wq} \right]_{ij} \right) W_{\mu}^{+} \bar{u}_{Li} \gamma^{\mu} (V_{\text{CKM}} d_{L})_{j} \right]$$
$$+ \left(\delta_{ij} + \left[\delta g_{L}^{Wl} \right]_{ij} \right) W_{\mu}^{+} \bar{\nu}_{i} \gamma^{\mu} e_{Lj} + \text{h.c.} \right]$$

Each **anomalous coupling** is a function of operator coefficients.

New physics effects from dimension-6 operators

Number of independent parameters:

3 anomalous TGCs

• 1 W boson mass shift
$$\delta_m = -\frac{1}{c_{\theta}^2 - s_{\theta}^2} \left(c_{\theta} s_{\theta} C_{HWB} + \frac{1}{4} c_{\theta}^2 C_{HD} + s_{\theta}^2 \delta v \right)$$

• 3+4 (leptonic+hadronic) Zff, Wff' vertex corrections

$$\begin{split} & \left[\delta g_{L}^{Zf} \right]_{ij} = T_{f}^{3} \left[C_{HF}^{(3)} \right]_{ij} - \frac{1}{2} \left[C_{HF}^{(1)} \right]_{ij} - \left[Q_{f} \frac{c_{\theta} s_{\theta}}{c_{\theta}^{2} - s_{\theta}^{2}} C_{HWB} + \left(T_{f}^{3} + Q_{f} \frac{s_{\theta}^{2}}{c_{\theta}^{2} - s_{\theta}^{2}} \right) \left(\frac{1}{4} C_{HD} + \delta v \right) \right] \delta_{ij}, \\ & \left[\delta g_{R}^{Zf} \right]_{ij} = -\frac{1}{2} \left[C_{Hf} \right]_{ij} - Q_{f} \left[\frac{c_{\theta} s_{\theta}}{c_{\theta}^{2} - s_{\theta}^{2}} C_{HWB} + \frac{s_{\theta}^{2}}{c_{\theta}^{2} - s_{\theta}^{2}} \left(\frac{1}{4} C_{HD} + \delta v \right) \right] \delta_{ij} \end{split}$$

 $\delta g_{1z} = \frac{1}{c_o^2 - s_o^2} \left(-\frac{s_\theta}{c_\theta} C_{HWB} - \frac{1}{4} C_{HD} - \delta v \right),$

 $\delta \kappa_{\gamma} = \frac{c_{\theta}}{s_{0}} C_{HWB}, \quad \lambda_{\gamma} = -\frac{3}{2}g C_{3W}$

where
$$\delta v \equiv \frac{1}{2} \left([C_{Hl}^{(3)}]_{11} + [C_{Hl}^{(3)}]_{22} \right) - \frac{1}{4} \left([C_{ll}]_{1221} + [C_{ll}]_{2112} \right)$$

TGCs vs. other anomalous couplings

TGC dominance assumption =

- The additional 1 + (3+4) parameters are very constrained by EWPD, and can be neglected in W pair production.
- Therefore, W pair production can be **interpreted** as probing the **3 anomalous TGCs**.

"How good is this assumption?"

- We focus on the following observables:
 - $\frac{d\sigma}{d\cos\theta}(e^+e^- \to W^+W^- \to qq\ell\nu)$ at LEP2 [LEP2 report, 1302.3415]
 - $pp \rightarrow W^+W^- \rightarrow e^{\pm}\mu^{\mp}\nu\nu$ leading lepton $p_{\rm T}$ at 8TeV LHC [ATLAS, 1603.01702]

TGCs vs. other anomalous couplings

We compare:

anomalous TGC effects considered in conventional TGC fits

vs.

 possible effects from other 8 anomalous couplings which are neglected in conventional TGC fits.

In particular, we set each parameter to its 2σ upper bound.

- TGCs from: [LEPEWWG/TGC/2002-02] [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch, 1604.03105].
- EWPD constraints from: [Falkowski, Riva, 1411.0669].

See also: Pomarol, Riva, 1308.2803; Ellis, Sanz, You, 1410.7703; Ellis, You, 1510.04561; Berthier, Bjørn, Trott, 1606.06693; Falkowski, Gonzalez-Alonso, Greljo, Marzocca, Son, 1609.06312; Ellis, Roloff, Sanz, You, 1701.04804. Zhengkang Zhang (U. Michigan & DESY) CERN CLIC Workshop, March 2017

TGCs vs. other anomalous couplings: the case of LEP2

TGCs vs. other anomalous couplings: the case of LEP2

TGCs vs. other anomalous couplings: the case of 8TeV LHC

TGCs vs. other anomalous couplings: the case of 8TeV LHC

 Interpreting W pair production as TGC measurements was justified by EWPD at LEP2, but is not at the LHC.

> "Will the situation hold in the future?" "How about a future lepton collider such as CLIC?" "If TGC interpretation fails, what should we do?" ...

To address these questions, let's first understand:

• What makes the difference between LEP2 and LHC?

What makes the difference between LEP2 and LHC?

- Z couplings to (RH) quarks are less constrained + $Z \rightarrow bb$ anomaly.
- Effects constrained by EWPD are enhanced at higher energy, e.g.

$$\mathcal{A}\left(f_R\bar{f}_L \to W_L^+ W_L^-\right) = \frac{\hat{s}}{2m_W^2} g^2 \sin\theta \left[-\delta g_R^{Zf} + Q_f \left(s_\theta^2 \delta g_{1z} - \frac{s_\theta^2}{c_\theta^2} \delta \kappa_\gamma\right)\right] + \mathcal{O}(\hat{s}^0)$$

constrained by EWPD but not negligible here!

How to understand this high-energy behavior?

- Goldstone equivalence theorem + dimensional analysis.

Important operators here are of the form

 $\mathcal{O}_{Hf} = i \left(H^{\dagger}(D_{\mu}H) - (D_{\mu}H^{\dagger})H \right) (\bar{f}\gamma^{\mu}f) \supset i(\phi^{-}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{-})(\bar{f}\gamma^{\mu}f)$

- Higgs fields take their Goldstone components rather than vev.

$$\begin{aligned} \mathcal{A}\left(f_R\bar{f}_L \to W_L^+ W_L^-\right) &= \mathcal{A}\left(f_R\bar{f}_L \to \phi^+ \phi^-\right) \left[1 + \mathcal{O}\left(\frac{m_W^2}{\hat{s}}\right)\right] \\ &= \frac{\hat{s}}{4m_W^2} g^2 \sin\theta \left(C_{Hf}\right) + \mathcal{O}(\hat{s}^0) \\ &= \frac{\hat{s}}{2m_W^2} g^2 \sin\theta \left[-\delta g_R^{Zf} + Q_f \left(s_\theta^2 \delta g_{1z} - \frac{s_\theta^2}{c_\theta^2} \delta \kappa_\gamma\right)\right] + \mathcal{O}(\hat{s}^0) \end{aligned}$$

Note: This type of operators also contributes to f f → Z^(*) → f' f', but their effects are not enhanced at high energy because |H|² → v²/2 (so Drell-Yan does not help!)

"So the situation will hold in the future, as we continue to explore the high-energy frontier."

See also Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer, 1609.08157 for similar discussion.

- It is time to update the way we perform EFT analyses.
- To take better advantage of high-energy data to learn about new physics, we need a more complete picture of EFT.

[Grojean, Montull, Riembau, ZZ, to appear]

Zhengkang Zhang (U. Michigan & DESY)

An updated picture of EFT analyses?

CERN CLIC Workshop, March 2017

An updated picture of EFT analyses?

CERN CLIC Workshop, March 2017

An updated picture of EFT analyses?

CERN CLIC Workshop, March 2017

Conclusions

- Interpretation of W pair production as TGC measurements is based on the TGC dominance assumption.
- This assumption was justified by EWPD for LEP2, but is already challenged by recent LHC data.
- Going to higher energy changes the way we should think about EFT and new physics.
- It is time to go beyond TGC interpretation. High-energy data at present (LHC) and in the future (CLIC etc.) require a more complete treatment of all EFT parameters.

