Considerations on Running at the Z⁰

D. Schulte for the CLIC team

Introduction

Two main issues to be faced

- Can we adjust the components to lower beam energy?
 - Can the magnets be adjusted?
 - Do we have enough aperture?
- Which bunch charge can be used at lower energy?
 - Maximum is defined by collective effects
 - longitudinal short-range wakefields
 - transverse short-range wakefields
 - transverse multi-bunch wakefields

Tentative strategy:

- Use full acceleration in RTML to minimise wakefield effects in RTML and at beginning of main linac
- ⇒ Main linac and BDS are the main limitations
- ⇒ Can review this but not likely to have huge improvement potential

BDS Considerations

- Can the final doublet be used at 45Gev with no important modifications?
 - A factor 4-5 is possible depending on the technology
 - ⇒ Z0 has to be explicitly foreseen the design
 - ⇒ Can likely not go further down without intervention
 - ⇒ Cannot easily run at Z0 for higher energy stages
 - ⇒ Maybe can replace doublet (or part of it) for dedicated Z0 run
 - ⇒ Need to check tolerances (field quality)

M. Modena

BDS Considerations II

- Final doublet defines the aperture of the collimation system
 - If we keep the doublet, absolute apertures stay the same but beam size doubles
 - ⇒ Scrape of larger fraction of the beam (more background from halo, e.g. muons)
 - ⇒ Remains to be quantified
 - ⇒ Wakefield effects increase by factor 4
 - ⇒ But can compensate by smaller bunch charge
 - ⇒ Quantitative assessment essential
 - This would become much worse for larger energy differences
- If we exchange doublet would win in aperture to increase collimation aperture
 - Could more than double it
 - Halo population significantly reduced
 - Wakefields strongly reduced
 - Have to check other magnets as well
- Can we exchange the final doublet?
 - For L* = 6m the magnets would be outside of the detector
 - ⇒ Appears possible to exchange
 - For L* < 6m the magnets reach into the detector
 - ⇒ Need to likely open detector to exchange
 - ⇒ Or find some clever solution

Luminosity

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} f_r n_b$$

Cannot change repetition rate f_r and did not foresee to change number of bunches per pulse n_b

The charge can change strongly Large impact on luminosity

$$\mathcal{L} \propto H_D \frac{N^2}{4\pi\sigma_x \sigma_y} = H_D \frac{N^2}{4\pi\sqrt{\epsilon_x \epsilon_y \beta_x \beta_y}} \gamma$$

Does change somewhat with N

Does not change drastically, but could gain a little bit

Loose about factor 4 because of energy

Tentative List of Scenarios to Consider

- A) Extract beam when it reaches 45GeV in linac
 - Requires some modification in main linac, long transfer line
 - Could be done as a stage during the construction
 - Allows to use N=N₀
- B) Accelerate beam at lower gradient in the main linac to reach 45GeV at the end
 - Little hardware modification required
 - Reduced charge N=x₁ N₀
- C) Accelerate beam at full gradient in first part of linac then drift through the rest of it
 - Little hardware modification required
 - Could even consider to accelerate above final energy and then decelerate
 - Reduced charge N=x₂ N₀
- D) Accelerate beam at lower gradient but modify the lattice design
 - Allows to make beam more stable N=x₃ N₀
 - Important modification of main linac required
 - Has impact on nominal design

Expected behaviour: $1 \ge x_3 \ge x_2 \ge x_1 \approx 0.25$

Note: Energy Spread

- We can tolerate 0.35% RMS energy spread in beam delivery system
 - Otherwise compromise luminosity
 - But will reevaluate for Z0 operation
- Main sources of energy spread
 - Correlated energy spread from linac wakefields:
 - 0.35% RMS at the end
 - Dominant factor at 190GeV
 - Initial energy spread of beam entering the linac
 - Nominal is 1.5% RMS at 9GeV
 - i.e. 0.09% at 190GeV
 - But 0.3% at 45.6GeV
 - Can maybe reduce spread if bunch charge is reduced (scenarios B, C and D)
 - Bunch-to-bunch variations from limited beamloading compensation with drive beams
 - Worse if only a part of the linac is used for acceleration (scenarios A, C, and partly D)
 - Maybe install additional klystrons?
- ⇒ Detailed integrated studies are required
- ⇒ Which spread is acceptable for physics?

Tentative Luminosities

Charge ratio	L	L _{0.99}	Pot. Scenarios
0.25	1.9x10 ³² cm ⁻² s ⁻¹ 1.7x10 ³² cm ⁻² s ⁻¹	1.9x10 ³² cm ⁻² s ⁻¹ 1.7x10 ³² cm ⁻² s ⁻¹	В
0.5	8.4x10 ³² cm ⁻² s ⁻¹ 7.6x10 ³² cm ⁻² s ⁻¹	8.2x10 ³² cm ⁻² s ⁻¹ 7.5x10 ³² cm ⁻² s ⁻¹	C?, D?
1.0	3.8x10 ³³ cm ⁻² s ⁻¹ 3.5x10 ³³ cm ⁻² s ⁻¹	3.5x10 ³³ cm ⁻² s ⁻¹ 3.2x10 ³³ cm ⁻² s ⁻¹	А

Tentative guesses for what scenarios may allow to do (lower for klystron-based design)

- Several issues to be looked at
- E.g. ignoring the issue of the uncorrelated beam energy spread
- Will have to update the estimates

Large range of luminosities

strong dependence on the charge (slightly more than quadratic due to H_D)

Luminosity spectrum is always quite good

• in worst case 90% of luminosity above 99% of cms energy

Can you down select what you want so that we can focus on one or two scenarios?

Conclusion

- For 380GeV stage, can make it possible to operate CLIC at 91.2GeV cms
- Important effort required to do the same for higher energy stages
- Different solutions can be considered for 380GeV
 - Luminosities range from $L=1.9x10^{32}cm^{-2}s^{-1}$ to $L=3.8x10^{33}cm^{-2}s^{-1}$
 - Luminosity spectra are very good in all cases
 - The impact of solutions on the design differs singificantly
 - Cannot use all scenarios for calibration runs
- Need to understand luminosity requirements
 - Calibration
 - Dedicated run
 - Input from physics required
- Need to identify requirements for beam energy spread
 - Some input from physics required
- Have to do quite some work
 - Amount depending on the choice of strategy