Stray Field Measurements

E. Marin¹, B. Heilig², J.Pfingster³, D. Schulte¹

¹CERN, (Switzerland)

 $^2 {\rm Geological}$ and Geophysical Institute of Hungary, (Hungary) $$^3 {\rm University}$ of Oslo, (Norway)

 $\begin{array}{l} \mbox{Monday, March 6}^{\rm th} \ 2017\\ \mbox{Session: Beam Dynamics 1}: \ \mbox{Main Linac and RTML}\\ \mbox{CLIC Week Workshop, CERN} \end{array}$

2 MEASUREMENTS

- CTF3
- PS
- AD
- XBOX
- Thoiry

MOTIVATION

CLIC-BDS Sensitivity to Stray Fields

- In 2010 simulation study of stray field impact on CLIC [†]
 - Tolerance of \approx nT for the BDS (collimation section)
 - Mitigation techniques (shielding, feed-forward system)
 - Lack of measurements on equipment
- Presently J. Pfingster calculations confirm tolerances and critical sections to Stray Field variations

Due to position offset

Due to angle offset

Magnetic Field Variation

- Natural Magnetic Fields (Earth's field, geomagnetic storm)
- \vec{B} -fields due to technical equipment
- Geomagnetic storm at Tihany Geophysical Observatory ^a
- Magnetic field expressed in XYZ components (X-North, Y-Eastern, Z-Vertical)
- Max. $\Delta \vec{B}$ observed during severe storm $\approx \mu T$ (infrequent and predictable)

^asimilar latitude as Geneva Data courtesy of B. Heilig

STRAY FIELD MEASUREMENTS @ CERN

MEASUREMENTS

Measurement Set-up

- Compact, portable and easy to set-up
- Specifications are not perfectly fitted to our requirements
 - Data acquisition at 128 Hz
 - Filter cut-off of the magnetometer is at 20 Hz
 - Not operational under radiation

Scenes

- 1st measurement campaign: 20/06/2016-29/06/2016
- 2nd measurement campaign: 16/01/2017-20/01/2017
- PS Ring • CTF3 XBOX LINAC-4
- AD Hall PACMAN

CTF3

Measurement at the Klystron Gallery

- Modulator
- Scandinavia
- New MKS
- MKS03

A common pattern was observed at all locations

Is this coming from the PS?

Protron Synchrotron Pulsing

PS

Proton Synchrotron

PS

		Measurement Spots			
		L1	L2	L3	L4
Distance to center	[m]	62	45	31	27
Duration	[min]	12	9	2	5

PS

Signal is attenuated as we move towards PS center

Antiproton Decelerator

AD Locations

Loc-0

Antiproton Decelerator

Baseline measurement was taken outside bldg. 193 (Loc-0). Time[†] lapse: 12:27- 12:40

4 additional locations were considered for measurements inside the AD hall;

- Center of ELENA ring (Loc-1)
 - Cycling OFF (Time lapse: 12:50-13:06)
 - Cycling ON (Time lapse: 13:06-13:18)
- Tangent of the Ring (Loc-2) (Time lapse: 13:20-13:30)
- Close to Experiment (Loc-3) (Time lapse: 13:36-13:43)
- Close to AD ring (Loc-4) (Time lapse: 13:48-13:58)

Measurement

Observed variations of few μT when AD is pulsing

Zoom In @ Loc-1

 $^{\dagger} Figure$ taken from Status and Prospects for the AD and ELENA, Lars V. Jorgensen / CERN / BE-OP

CONCLUSIONS & PROSPECTS

XBOX

Klystron-A

 Measurement on 17/01/2017: Sensor was located 1 cm below the waveguide. X-axis perpendicular to waveguide. Frequency

Klystron-A

 Measurement on 17/01/2017: Distance scan (horizontally). Sensor was next to waveguide. Z-axis perpendicular to waveguide

Klystron-C&D

 Measurements on 19/01/2017: Distance scan (vertically). Sensor was below the waveguide. X-axis perpendicular to waveguide

Shielding

- Shield waveguide (soft-µ-material)
- Shield sensor (Aluminium pipe, soft-µ-material)

Scenario	Starting Time	Finishing Time	Observations
	[H:M:S]	[H:M:S]	
Baseline	13:10:00	13:18:00	Sensor 7cm below WG
WG-I	13:20:00	13:22:00	Shielding WG
WG-II	13:23:00	13:25:00	Shielding WG without contact
Sen-I	13:32:00	13:34:00	Shielding MS 25cm from WG
Sen-II	13:35:00	13:37:00	Shielding MS 7cm from WG
No shield	13:45:00	13:47:00	No shielding
Sen-III	13:49:00	13:51:00	Shielding MS 7cm from WG
Sen-III	13:52:00	14:00:00	Shielding MS 7cm from WG and covered
No cover	14:01:00	14:03:00	Shielding MS 7cm from WG without cover

MEASUREMENTS

XBOX

Shielding

8.4					2 NI	
-IV	U)	$H^{}$	/A	н	עונ	

MEASUREMENTS

XBOX

Source

- Power scan
- Pulse width scan

- On/Off low-level RF
- On/Off Solenoid

Thoiry

Thoiry

Thoiry

Measurement Outside CERN

Thoiry

Thoiry

Frequency Spectra (by B. Heilig)

Multi-harmonics: • X: 16.7, 33.6 and 50 Hz • Y,Z: 16.7, 33.6 and 50 Hz 30. 44 and 60 Hz

Signals at 1/3*50 Hz (16.7 Hz), 2/3*50 Hz (33.4 Hz) and 50 Hz multi-harmonics are likely produced by 15 kV 16.7 Hz AC trains

This technical solution for railway electrification is widely used in Germany, Austria, Switzerland, Norway and Sweden (but as far as I know not in France). If this is true, these multi-harmonic signals should be produced by stray currents coming from Switzerland †

[†]https://en.wikipedia.org/wiki/15_kV_AC_railway_electrification

CONCLUSIONS & PROSPECTS

Conclusions & Prospects

- BDS is most sensitive to wavelength (\approx 7 km), 12% $L_{\rm loss}$ for 1 nT amplitude stray field without any countermeasure
- Natural and man-made magnetic field sources are well-above that tolerance at Earth's surface
- \bullet Variations of $\geq \mu T$ are observed at CTF3 due to the PS cycle
- Variations of tens of nT are observed closed to the waveguides
 - Signal can be shielded by a soft- μ material
- \vec{B} measurements underground
- 2D stray field spectrum would be very helpful
- Potential implications of PS/AD and XBOX results on CLIC (Klystron-based)
- Developing strategies for mitigating intolerable variations of magnetic field

Acknowledgements

- All the people working at the XBOX, specially M. Volpi
- The CTF3 team, specially W. Farabolini
- C. Carli for allowing us to measure at the AD hall
- A. Lombardi for arranging our visit at LINAC-4
- D. Tshilumba for his help during the PACMAN measurement

Thank you for your attention!

BACK-UP

Magnetic Field Variation

- Maximum variation observed at 1 Hz is pproxnT
- Measurements at higher frequencies would be needed to cope with the fields generated by equipment
- Might be compensated by means of feed-back system

B_x B_y B_z

3

4

2

LINAC-4

