

OPTIMIZATION OF THE CLIC POSITRON SOURCE FOR THE FIRST STAGE AT 380 GEV

Cafer Bayar (Ankara University/CERN) Dr. Steffen Doebert (CERN) Dr. Andrea Latina (CERN) Prof. Dr. Abbas Kenan Çiftçi (Ankara University)

THE CLIC INJECTOR COMPLEX

THE PRE-INJECTOR LINAC : CAPTURE AND ACCELERATING SECTION

Cafer Bayar

Optimization in the decelerating mode: PARMELA

Optimization in the decelerating mode: PARMELA

Accelerating and optimized decelerating modes: PARMELA

INJECTOR LINAC: FOD0 sections

	MAD-X and PLACET					
Section	Quadrupole	Quadrupole	Beta max	Cell length (m)	Starting energy	End energy
numbers	length (m)	strength (m ⁻²)	(m)		(GeV)	(GeV)
1	0.4	9.00	1.7160	1.10	0.2065	0.3865
2	0.4	3.95	3.3860	2.08	0.3865	0.7915
3	0.4	1.85	6.8252	4.10	0.7915	1.4215
4	0.4	1.02	12.1250	7.20	1.4215	2.0515
5	0.4	0.68	17.8860	10.60	2.0515	2.8615

- To accelerate positrons from 200 MeV up to 2.86 GeV
- Quadrupoles are used as surrounding RF structures in the first and second sections.
- Minimum aperture of quadrupole is around 10 cm.
- It gives a limit in energy.
- A phase advance of 90 degrees is chosen in FODO.

INJECTOR LINAC: MADX

INJECTOR LINAC: EMITTANCE GROWTH

INJECTOR LINAC: EMITTANCE CORRECTION

- To solve the emittance growth issue, the matching process is applied again in PLACET by using our particle distribution at the entrance of the injector linac.
- As a result, the emittance growth is mitigated along the beam line.
- The corrected betatron functions computed with PLACET are compatible with MAD-X results.

INJECTOR LINAC: POSITRON YIELD

 Table 21 – Positron yield for different values of the energy acceptance of the Pre-Damping Ring.

Energy Acceptance %	Yield (e ⁺ /e ⁻)
1.2	0.453
2	0.561
3	0.619

http://cds.cern.ch/record/1277226/files/CERN-OPEN-2010-020.pd

• It was necessary to increase the aperture of the beam pipe in the quadrupoles to 4 cm along the beam line.

- All positrons by 99 % are transported.
- All positrons are within 1% acceptance window of the pre-damping ring.
- An aperture of 2 cm all along the beam line would have resulted in a 10 % loss of positrons.

INJECTOR LINAC: BEAM OFFSET ERROR

• For positrons, the beam size (rms) is bigger than 700 micrometres at the entrance of the injector linac.

INJECTOR LINAC: BEAM OFFSET ERROR

The beam offsets do not affect the emittance growth much for positrons at x and y axes due to the large rms beam size.

INJECTOR LINAC: MISALIGNMENT IN QUADRUPOLES

- Misalignment errors: 50 µm, 100 µm and 150 µm for each quadrupole randomly.
- Beam position monitor (BPM) with zero length before each quadrupole
- BPM resolution: 1 µm.

INJECTOR LINAC: MISALIGNMENT CORRECTION

- The correction is applied just for a misalignment error of 100 µm
- BPM resolution: 1 µm.
- Dipole (corrector) magnet with zero length after each quadrupole.
- "One to one" correction by correctors.
- The emittance growth is mitigated.

CONCLUSION

CDR:

- The number of quadrupoles: 192
- Used long accelerating structures (4 or 5 meters TW)
- Used the quadrupoles and TW structures separately by increasing the average accelerating gradient
- Used triplet structures along the injector linac
- Needed a bunch compressor
- ➤ Total yield: 0.70 e-/e+
- Positron yield: 0.39 e-/e+ within 1% acceptance window
- Assumed two targets in parallel for the first stage of CLIC

NEW DESIGN:

- ✓ The number of quadrupoles: 141 (Reduced by 26 %)
- Used technologically feasible accelerating structures (1.5 m TW)
- Used together quadrupoles and TW structures by using thin length approximation
- ✓ Used F0D0 structures along the injector linac
- \checkmark Do not need a bunch compressor
- ✓ Total yield: 0.97 e-/e+
- ✓ Positron yield: 0.97 e-/e+ within 1% acceptance window (increased by a factor of 2.5)
- Assumed a single target for the first stage of CLIC at 380 GeV

THANK YOU For your attention

