Testing Future Linear Collider Final Focus Systems in SuperKEKB

> P. Thrane K. Oide R. Tomás D. Zhou F. Plassard F. Carlier

CLIC Workshop 2017, CERN

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Motivation for testing future LC FFS in SuperKEKB.
- Results from initial low β_{v}^{*} simulations in SuperKEKB LER.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

FFTB and the traditional CCS

- Two separate, high dispersive regions with two sextupoles each correct horizontal and vertical chromaticity respectively.
- Advantage: easier to tune.
- Tested in the FFTB, where a vertical beam size $\sigma_y^* = 70 \pm 7$ nm was achieved¹.

¹A. Alexandrof et al. "Results of Final Focus Test Beam", IEEE, 4, pp.2742-2746 (1996).

ATF2 and the compact CCS

- Sextupoles for chromaticity correction are interleaved with the FD.
- Shorter FFS.
- Still unsolved discrepancy between experiment and simulations.

FIG. 11. The IP beam sizes measured in ATF2 (red) and obtained with simulations without the orbit correction (black) for half β_y^* , $10\beta_x^*$ and half β_y^* , $25\beta_x^*$ optics.

M. Patecki et al. "Probing Half β_y^* Optics in the Accelerator Test Facility 2", 10.1103/PhysRevAccelBeams.19.101001 (2016).

FFS chromaticity comparison

	L*[m]	$\beta_y^*[\mu m]$	$\xi_{y} \sim (\mathrm{L}^{*}/eta_{y}^{*})$
CLIC	3.5	70	50 000
ILC	3.5 /4.5	480	7300 /9400
ATF2	1	100	10 000
FFTB	0.4	100	4 000
SuperKEKB LER	0.935	270	3 460
SuperKEKB HER	1.41	410	3 440

- Nominal SuperKEKB will demonstrate chromaticity correction on same scale as FFTB.
- ► A factor 3 reduction of β^{*}_y in SuperKEKB would be on scale with ATF2 and ILC, but with the traditional CCS.

Chromaticity correction optics

 Comparison of FFS optics in SuperKEKB LER and in CLIC with the traditional CCS.

Increasing chromaticity in LER

- SuperKEKB LER lattice matched to reduced β^{*}_y by a factor 2, 2.5 and 3 using SAD².
- Dynamic aperture and Touschek lifetime optimized by varying sextupole strengths.

Dynamic aperture and Touschek lifetime in LER

 Touschek lifetime estimated using nominal values for emittance and intensity.

Effect of machine errors

- No correction only added errors that do not destabilize the beam.
- No errors added in the IR.

	$\sigma_{\theta}[\mu rad]$	$\Delta K/K$
Quad.	100	$2.5 imes10^{-4}$
Sext.	100	$2.5 imes10^{-4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Dynamic aperture with errors

- Dynamic aperture reduction calculated for 60 machines with different lattice errors.
- Required aperture for top-up injection shown in plot for reference.

Touschek lifetime with errors

 Average Touschek lifetime calculated for 60 machines with different lattice errors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusions

Preliminary results show a reduction of β^{*}_y by a factor 3 might be possible in LER.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Operational scenario to be decided.

SuperKEKB Machine Parameters

	LER (e^+)	HER (e^{-})	Unit
Е	4.000	7.007	[GeV]
Ι	3.6	2.6	$[\mathbf{A}]$
Number of bunches	2 5		
Bunch current	1.44	1.04	[mA]
Circumference	$3\ 016.315$		[m]
ϵ_x/ϵ_y	3.2/8.64	4.6/12.9	[nm/pm]
Coupling	0.27	0.28	[%]
$\beta_x^*/\bar{\beta}_y^*$	32/0.27	25/0.30	[mm]
Crossing angle	83		[mrad]
α_p	3.18×10^{-4}	4.53×10^{-4}	
σ_{δ}	$8.10 imes10^{-4}$	$6.37 imes10^{-4}$	
V_c	9.4	15.0	[MV]
σ_z	6.0	5.0	[mm]
ν_s	-0.0244	-0.0280	
ν_x/ν_y	44.53/46.57	45.53/43.57	
U ₀	1.86	2.43	[MeV]
$\tau_{x,y}/\tau_z$	43.2/21.6	58.0/29.0	[msec]
ξ_x/ξ_y	0.0028/0.0881	0.0012/0.807	-
Luminosity	8×10^{35}		$[cm^{-2}s^{-1}]$