

STATUS ON ARGONNE WAKEFIELD ACCELERATOR AND ITS EXPERIMENT

WEI GAI

FOR AWA GROUP AT ARGONNE NATIONAL LAB

CLIC Workshop, March 8, 2017

*with major contributions from Euclid Techlabs/Tsinghua University

OUTLINE

Accelerator R&D at ANL HEP
Facility and Experiments Highlights
Collaboration with External Users
Challenges and Future Plan

A PLATFORM FOR ADVANCES SCIENCES AND TECHNOLOGIES FOR FUTURE ACCELERATORS

ARGONNE WAKEFIELD ACCELERATOR (AWA)

ARGONNE WAKEFIELD ACCELERATOR (AWA) AND A LIST OF MAJOR ACCOMPLISHMENTS/HIGHLIGHTS

ARGONNE WAKEFIELD ACCELERATOR GROUP

- 6 scientific/engineering staffs
- 1 technician
- ~ 5 constant students from universities
 - 3 Ph.D. Graduated
 - 2 new students
- 4 Euclid Residents

AWA BEAMLINES experimental area EEX & bunch collinear compression & TBA 70 MeV drive witness beam U-turn beam

15 MeV witness beam

- single bunches
- bunch charge 0.05 to 10 nC

- bunch trains of up to 32 bunches
- Maximum charge in single bunch 100 nC
- maximum charge in bunch train 600 nC.

HIGHLIGHT OF ACCOMPLISHMENTS

- 11.7 GHz TBA (see below, IPAC 16, plenary talk)
- Completed the phase I ILC positron target testing

- 26 GHz TBA (on going, see below)
- Staging demonstration (see NAPAC 16, plenary talk))
- EEX demonstrated (IPAC oral, and AAC invited,)
- Hosted International Workshop on High Gradient 2016 at ANL

REPORT ON RECENT DATA FROM AWA

A. High gradient Two Beam Acceleration at 11.7 GHz Measured: ~ 150 MV/m, 300 MW measured*

\bigcirc

B. 26 GHz Two beam acceleration using dielectric structures for both power generation and acceleration: (Dec. 2016~Now)

The 1st Full Dielectric Short Pulse TBA Test(26GHZ) (Dec. 2016~Feb. 2017)

RF Pulse Out of The 26GHz Dielectric PETS

~160MW rf power output by a 4x22nC bunch train were measured (preliminary results; need to be confirmed from the final calibration).

Argonne 4

Drive Beam Deceleration In The 26GHz D-PETS

62 64 66 MeV

Energy profile of Bunch#1 entering the D-PETS

Bunch#1 exits the D-PETS

Bunch#1&2 exit the D-PETS

4 bunches exit the D-PETS

58

60

56

➤ ~4MeV deceleration was measured for each drive bunch which is aligned with ~160MW rf power output by a 4x22nC bunch train.

Strong transverse kick occurred during the bunch train case resulting in Bunch #3 out of the energy spectrometer screen in the 4-bunch case (this prototyping D-PETS doesn't have transverse mode damping feature).

Main Beam Acceleration In The 26GHz Dielectric Accelerator

• ~1.8MeV acceleration of a 230pC witness beam transmitted through the dielectric accelerator, which is eqv. to ~50MV/m gradient.

• Gradient is lower than the ideal case due to the combination of RF loss in the waveguide, miss-match of the phase advance, and inefficient rf coupling, etc.

C: STAGING FOR TWO BEAM ACCELERATION

C: STAGING EXPERIMENT AT AWA

C: Complete STAGING DEMONSTRATION AT AWA Nicole Nevue's thesis

To be completed in FY 18

REPORT ON RECENT ACTIVITIES FOR EXTERNAL USERS

A. STUDIES OF FIELD EMISSION/RF BREAKDOWNS AT AWA (SLAC/Tsinghua U.)

Sketch of the Dark current imaging beamline at AWA

E. MICRO-LENS ARRAY (MLA) LASER HOMOGENIZER Flat-Top Fourier-Lens

MLA plate

Layout for laser homogenizer

Optical transport requires custom imaging solution

Advantages of the MLA:

- Flat-top homogenized laser 1) spot
- Reduction of beam emittance 2) by factor of 3!
- Multi-beam pattern generation 3)
- Available off-shelf! 4)

20

10

20

10

0

Resulting distribution can be flat-top or multi-beam

Joint collaboration with **Northern Illinois** University

Both beams were produced at 18/50 MeV

References:

FERMILAB-TM-2634-APC (arXiv:1609.01661), FERMILAB-CONF-16-460-APC (Proc. of NAPAC'16)

F. Wakefield measurements in an X-band PBG accelerating structure at AWA

- Open PBG structures with absorbers were demonstrated to have excellent higher order mode suppression properties.
- Future work: two-bunch experiments, demonstration of the wakefield acceleration.

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

F. Future work: X-band PBG accelerator with elliptical rods

The PBG cells with elliptical inner rods can have better wakefield suppression properties and go to higher gradients.

	Resonator with 6 elliptical rods	Resonator with round rods	MIT's PBG resonator with e-rods	
[<i>r_s/Q</i>]	14.94 kΩ/m	13.8 kΩ/m	14.85 kΩ/m	
B _{peak} /E _{acc}	5.3 mTesla/(MV/ m)	8.4 mTesla/(MV/ m)	5.6 mTesla/(MV/ m)	a/(MV/m)]
$E_{\text{peak}}/E_{\text{acc}}$	1.98	2.13	2.07	c ImTes
Q_{diff} (HOMs)	130	212	431	Bmax/Eac
• Los Alamos				

NATIONAL LABORATORY

Operated by Los Alamos National Security, LLC for NNSA

G. High Gradient Test Cell for LANL (John Lewellen) at AWA

- Key features
 - on-axis, variable coupling
 - removable cathode backplane
 - modular design
- Implementation stages
 - Flat backplane, no cathode joint
 - Flat backplane, removable cathode
 - Field enhancing geometry
- Initial tune & coupling check completed, Preparing for assembled system leak check
- Final design of water manifold for temp. stabilization

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

NEXT STEPS (5 -10 YEARS).....

1) Maintaining core competences:

- Enhancing the results, demonstrate collider type devices, such as power sources and gradients. 300 – 500 MV/m and 1 GW peak power in the range of 10 -100 GHz range.
- The research has to have relevance to the future of HEP LC, such as 300 – 1000 GeV CM e+ e- machines.

2) Improve facility:

- Drive beam, higher charge, shorter length and lower emittance
- Construct double EEX, can be used by external users.
- Provide high power radiation sources (high power RF and THz), order of magnitude above current available sources from other places.
- Complete the capabilities for Collinear plasma WF experiments, 25

NEXT STEPS (5 -10 YEARS)

- Beam conditioning and manipulations:
 - EEX
 - High brightness beam generation and characterization,
 - Diagnostics Development and testing
 - Applications:
- Electron interaction with materials,
 - Electron imaging for time and spatial resolved advanced high density mater studies
 - Compact Accelerators for HEP detector calibrations (example, 0.1 20 MeV electron, muon – e detector and so on)
 - Gamma rays, and e+

SUMMARY:

AWA HAS BEEN COMMISSIONED, WE WELCOME EXERNAL USERS FOR THEIR BEAM PHYSICS/ACCELERATOR PROJECTS.

