

Francesco Riva (Université de Genève)

# Higgs Couplings ... without the Higgs



Francesco Riva (Université de Genève)

# LHC Exploration

Focus so far: Search for new light particles



Energy frontier (13 TeV)

Experimentally: First accessible signal/Easy to study

# LHC Exploration

Focus now: Standard Model Precision Tests



#### Infinite Information

 $function(E^2) = f(0) + f'(0)E^2 + f''(0)E^4 + \cdots$ 

# LHC Exploration

#### Focus now: Standard Model Precision Tests



(2019: 65 fb-1)

# Infinite Information

$$function(E^2) = f(0) + f'(0)E^2 + f''(0)E^4 + \cdots$$

systematic Taylor expansion for all observables

#### Effective Field Theory (EFT)

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2} \sum_i c_i \mathcal{O}_i + \cdots$$



$$\mathcal{O}_i = rac{(ar{\psi}\gamma_\mu\psi)^2}{\Lambda^2}$$

most relevant effects from all heavy BSM

2000

m(ee) [GeV]



- small statistics

m(ee) [GeV]

- more challenging measurement
- more space for improvement



- big statistics
- sooner or later systematic limited

$$\sigma = \sigma_{\rm SM} \left( 1 + c \frac{E^2}{\Lambda^2} + \cdots \right)$$

300 400



### e.g. 272 processes (WZ,ll,...)

- small statistics
- more challenging measurement
- more space for improvement
- signal so big that even a poor measurement can be precise



e.g. Higgs Couplings, Z

- big statistics
- sooner or later systematic limited



# Imagine measuring $\left. \frac{\delta \sigma}{\sigma_{\rm SM}} \right|_{\tau} \sim 10^{-4}$

(surely a precise measurement)

... equivalent to  $\frac{\delta\sigma}{\sigma_{\rm SM}} \sim 10\%$  (naively not so precise)

(naively not so precise)

$$\left. \frac{\delta \sigma}{\sigma_{
m SM}} \right|_{\sqrt{s} = 3 \, {
m TeV}} \sim 10\%$$

Effect grows  $\approx$  E2:  $\left(\frac{3000}{91.2}\right)^2 \approx 1000$ 



Experimentally very appealing

# What to expect from a theory viewpoint?

Higgs Compositeness: Higgs must be a (pseudo)goldstone boson



Giudice, Grojean, Pomarol, Rattazzi'08;

Supersymmetry: only Hz exchanged at tree-level (R-parity)

second Higgs



Higgs Couplings are modified

# Higgs Couplings

### Modifications of Higgs couplings in EFT language:



 $\mathcal{L}_{\mathrm{SM}} \times |\mathsf{H}|^2$  has no effect in vacuum <+>=v

 $\frac{1}{g_s^2}G_{\mu\nu}G^{\mu\nu}+\frac{|H|^2}{\Lambda^2}G_{\mu\nu}G^{\mu\nu}=\left(\frac{1}{g_s^2}+\frac{v^2}{\Lambda^2}\right)G_{\mu\nu}G^{\mu\nu}+h\frac{2v}{\Lambda^2}G_{\mu\nu}G^{\mu\nu}+\cdots$ 

# HL-LHC Reach (3000 fb-1) this morning talks

### Higgs couplings: measured in processes with on-shell Higgs (E=125 GeV)

Optimistic Systematics (S2)





# Higgs Couplings at High-Energy

Higgs couplings:

Theoretically Interesting Experimentally not High-E measurements





but...

SM is the unique theory, with its particle content, valid up to arbitrary energy:



Any coupling modification must induce energy-growth in some process, reducing the validity energy-range

# Higgs Couplings... without a Higgs Henning, Lombardo, Riembau, FR'18

Any modifications of Higgs couplings induces E² growth in some process with longitudinal W,Z bosons!



# Higgs Couplings... without a Higgs Henning, Lombardo, Riembau, FR'18

Any modifications of Higgs couplings induces E² growth in some process with longitudinal W,Z bosons!



Another way of understanding E-growth:



Contact Interaction, Among WL,ZL

Golstones = WL,ZL

$$|H|^2 = \frac{1}{2} \left( v^2 + 2hv + h^2 + 2\phi^+ \phi^- + (\phi^0)^2 \right)$$

with 1 Higgs v.e.v.



$$pp \rightarrow jj + 4V_{L_1}$$



with 3 Higgs v.e.v.s

(= traditional Higgs Coupling measurement)





Another way of understanding E-growth:



with 3 Higgs v.e.v.s

(= traditional Higgs Coupling measurement)



statistics

Another way of understanding E-growth:

$$h^3 \in \frac{|H|^6}{\Lambda^2}$$

Contact Interaction, Among WL,ZL

Golstones = WL,ZL

$$|H|^2 = \frac{1}{2} \left( v^2 + 2hv + h^2 + 2\phi^+ \phi^- + (\phi^0)^2 \right)$$



with 1 Higgs v.e.v.



with 3 Higgs v.e.v.s

(= traditional Higgs Coupling measurement)



statistics

tenning,Lombardo,Riembau,FR′18



> HwH: single channel, simple analysis, competitive with HC!

... endless possibilities of improvement ...

- More Final states



- Look also at E2-growing processes



- Keep differential information to exploit E-growth

- Develop polarization-sensitive analysis (see Panico,FR,Wulzer'17) (SM VT final states large and not interfering)

# "Higgs without Higgs" Program











 $\kappa_G |H|^2 G^a_{\mu\nu} G^{a\,\mu\nu}$ 





$$\kappa_{\gamma} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\kappa_{Z\gamma} |H|^2 W^a_{\mu\nu} W^{a\,\mu\nu}$$









# HwH Program: top Yukawa





### Signal classified by #leptons:

|                          | Process          | $0\ell$  | $1\ell$  | $\ell^{\pm}\ell^{\mp}$ | $\ell^{\pm}\ell^{\pm}$ | $3\ell(4\ell)$ |
|--------------------------|------------------|----------|----------|------------------------|------------------------|----------------|
| $\sim V$                 | 1                | 3449/567 | •        | · ·                    | -                      | -              |
| $ttjj \rightarrow tWbjj$ | $W^{\pm}W^{\pm}$ | 2850/398 | 1425/199 | -                      | 178/25                 | -              |
| background               | $W^{\pm}Z$       | 3860/632 | 965/158  | 273/45                 | -                      | 68/11          |
| manageable               | ZZ               | 2484/364 | -        | 351/49                 | -                      | (12/2)         |
|                          |                  | N        |          |                        | <u> </u>               |                |

 $p_T^t > 250 \text{ GeV} / p_T^t > 500 \text{ GeV}$ 

7>21: Small Background

# HwH Program: top Yukawa



### ▶ HwH competitive with HC!

Further improvements: differential distributions (into larger E2) better background estimate

# More Top and Higgs at High-Energy

Top-Higgs: well motivated by naturalness Other Top-Higgs effects grow in single-top

Dror, Farina, Salvioni, Serra'16

Degrande, Maltoni, Mimasu, Vryonidou, Zhang' 18





### HwH Program











 $\kappa_G |H|^2 G^a_{\mu\nu} G^{a\,\mu\nu}$ 





$$\kappa_{\gamma} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\kappa_{Z\gamma} |H|^2 W^a_{\mu\nu} W^{a\,\mu\nu}$$









### HwH Program: Higgs-Gluons

Azatov, Grojean, Paul, Salvioni'14



Important since Coupling measurements leave degeneracies...



HwH offer new observables, orthogonal to previous ones!

### HwH Program

 $\sim const$ 









 $\kappa_G |H|^2 G^a_{\mu\nu} G^{a\,\mu\nu}$ 





$$\kappa_{\gamma} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\kappa_{Z\gamma} |H|^2 W^a_{\mu\nu} W^{a\mu\nu}$$











## HwH Program: h to gauge bosons

$$\kappa_{\gamma} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\kappa_{Z\gamma} |H|^2 W^a_{\mu\nu} W^{a\mu\nu}$$





MISI

### Simple analysis:

- VBF cuts
- Binning  $\sum |p_T^V|$



 $\kappa_{Z\gamma}$  competitive,  $\kappa_{\gamma}$  not



# Message

- Higgs Coupling (HC) modifications: crucial for BSM
- High-Energy precision tests: appealing experimental program
- Multiboson (HwH): Competitive/Complementary to HC measurements
  - Many opportunities for improvement (contrary to HC):



Important for future colliders (HL-LHC,HE-LHC,CLIC,FCC,...)

### BSM

Composite Higgs Models: 
$$\kappa \sim \frac{v^2}{\Lambda^2} \lesssim (1-5)\%$$
  $m_{
m NP} \sim g_* \Lambda \sim 30 \, {
m TeV}_{g_* \sim 4\pi}$ 

Here  $\Lambda$  analog of pion (Direct Searches Poor decay constant f for large g\*  $3\,\mathrm{TeV}$ )



# Modifications of the SM induce unitarity violation in some channel... which channel first?



| Process                               | Unitarity Violating Scale                                        |
|---------------------------------------|------------------------------------------------------------------|
| $h^2 Z_L \leftrightarrow h Z_L$       | $66.7 \text{ TeV}/ \delta_3 - \frac{1}{3}\delta_4 $              |
| $hZ_L^2 \leftrightarrow Z_L^2$        | $94.2~{ m TeV}/ \delta_3 $                                       |
| $hW_LZ_L \leftrightarrow W_LZ_L$      | $141 \text{ TeV}/ \delta_3 $                                     |
| $hZ_L^2 \leftrightarrow hZ_L^2$       | $9.1 \text{ TeV}/\sqrt{ \delta_3 - \frac{1}{5}\delta_4 }$        |
| $hW_LZ_L \leftrightarrow hW_LZ_L$     | $11.1 \text{ TeV}/\sqrt{ \delta_3 - \frac{1}{5}\delta_4 }$       |
| $Z_L^3 \leftrightarrow Z_L^3$         | $15.7 \text{ TeV}/\sqrt{ \delta_3 }$                             |
| $Z_L^2 W_L \leftrightarrow Z_L^2 W_L$ | $20.4 \text{ TeV}/\sqrt{ \delta_3 }$                             |
| $hZ_L^3 \leftrightarrow Z_L^3$        | $6.8 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{3}}$ |
| $hZ_L^2W_L \leftrightarrow Z_L^2W_L$  | $8.0 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{3}}$ |
| $Z_L^4 \leftrightarrow Z_L^4$         | $6.1 \text{ TeV}/ \delta_3 - \frac{1}{6}\delta_4 ^{\frac{1}{4}}$ |

Generic models valid to 5 TeV

