Standard Model Measurements

Lucia Di Ciaccio
Université de Savoie MB & CNRS/IN2P3

Presenting results from ATLAS, CMS, LHCb, D0 and HERA Collaborations

SM measurements: introduction

- "SM everywhere" → important to understand until which point it describes our world
 - Need to perform SM measurements as best we can
 - Need to look for "Beyond SM". Twofold interest in SM measurements:
 - look for deviations wrt SM
 - SM is a background for direct searches

SM measurements: outline

◆ Tests of QCD nev

V(V=W,Z) + Jets, Photons 1011

- p_T^{V}
- ◆ E.w. precision tests
- m_W , $\sin^2\theta_W$, m_{top}
- Top couplings and more ...
- o ttZ, 4 tops, A_ctop, new single top
- Gauge boson couplings
- VV, Vjj , VVjj & VVV

Standard Model is (nearly) everything (so far)

→ quick overview of (10!) & few recent resul

Tests of QCD

Probing QCD: V+jets (V=Z,W)

 $p_{-}^{jet} > 25 \text{ GeV}, \ln^{jet} I < 2.5$

 $L = 19.7 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV}$

- Cross section measurements of V+jets test NLO & NNLO QCD predictions SMP-18-013
- New ATLAS: inclusive jets + Z(ee) vs jet |y| and |p_T|

Probing QCD: cross section vs jet size

Dependence of the jet production cross section on the anti-k_T distance parameter R tests the modeling of the perturbative and nonperturbative (NP) processes in parton evolution

New CMS: NLO + NP corrections gives a good description of data

Ratio of jet cross section:

w.r.t. R = 0.4 jet

< 35.9 fb⁻¹ (13 TeV) CMS Preliminary lvl<0.5 Pvthia8(CUETP8M1) Madgraph Herwig++(CUETHss1 PH+P8(CUETP8M1) (da/dy) / (da/dy of AK4 Jets) PH+Hwa(EE5C) Exp Sys Theory Unc LO+NP 0.8 196 < p_ < 272 GeV 0.6 **SMP-19-003** Ratio to Data 1.2 0.2 Jet Radius

Ratio of jet cross sections: R= 0.2 jets/R= 0.4 jet

Recent as measurements

- α_s from fraction R_{Δφ} of dijet events with $\Delta \phi_{12} < \Delta \phi_{max} = 7/8\pi$ (use $0 < y^* < 1.0$, $y_* = |y_1 y_2|/2$) $\Delta \phi_{12}$
- \rightarrow Test scale evolution of α_s up to 1.7 TeV
- $\alpha_s(m_z)$ from a global NNLO QCD fit including 0.15 inclusive DIS and jet data (jet predictions from NNLOJET) Simultaneous determination of the PDFs and $\alpha_s(m_z)$: $\alpha_s(m_z) = 0.1150 \pm 0.0008 \text{ (exp)} + 0.0002 \text{ (model)} \pm 0.0006 \text{ (hadr)} \pm 0.0027 \text{ (scale)}$
- → ~ 30% reduction of scale uncertainty wrt NLO analysis
- $α_s(m_z)$ fit triple differential tt cross section @ NLO (CMS, 1904.0523) including HERA DIS data for simultaneously $α_s$, m_t^{pole} and PDF extraction:
 - $\alpha_s(m_z) = 0.1135 \pm 0.0016(fit) \pm 0.0002 \text{ (model)}$ $\pm 0.0008 \text{ (PDF param)} + 0.0011 \text{ (scale)}$
- → Value compatible with competitive uncertainty

Photon (+ jet) cross sections

- Test pQCD with a hard colorless probe + sensitivity to gluon density in the pro
- New ATLAS result: better γ calibration & identification
 → reduced experimental systematic uncertainty (by up to ~ 40%)
- Cross sections vs E_T & |η | : good description of data already @ NLO QCD
- Recent NNLO calculations (NNLOJET) lead to a reduction of the theory scale uncertainty, ($< \sim 5\%$) and to an improved description of the measurements

Gauge boson $p_T^V(V = W, Z)$

- p_T distribution (V = W, Z): probes various aspects of the strong interactions (fixed order, resummed, parton shower calculations)
- New D0 p_T^W: measurement where the production dominated by valence quarks
- CMS p_T^z : for normalised σ , uncertainty < 0.5 % for p_T^z < 50 GeV, ~ same as ATLAS
- Predictions describe data within theory uncertainties:
 - @ low p_T: RESBOS calculation (resummed NNLL) does a good job (but no uncertainties available)
 - @ high p_T: good description with MadG5_aMC@NLO; Z+j @ NNLO small uncertainti

Key ingredient for a precise measurement of the W[±] mass @ pp colliders

E.w. precision measurements

Probe BSM via electroweak precision tests:

 m_W , $\sin^2\theta_W$, m_{top}

mw [MeV]

- m_W, sin²θ_W: important parameters of SM.
 Can be calculated from 3 measured e.w. observables
 - (ex. from 3 best measured: α_{em} , G_F and m_Z plus corrections including m_{top} & m_H)
- Comparing indirect to direct measurements

 testest Monterasureonsistency → BSM

probe $\Delta m_W \le 8 \text{ MeV},$ $\Delta \sin^2 \theta_W \le 7 * 10^{-5}$ $\Delta m_{top} \le 1 \text{ GeV}$

- PDF source of main systematics pp colliders (followed by QCD modelling)
- Projections from LHCb, 1808.08865:
 m_W measurement @ forward rapidities
 - complementary lepton acceptance 2 < η_I < 5
 ⇒ partial anticorrelation of PDF w.r.t. existing measurements, Eur. Phys. J. C75 (2015) 601)

→ ∆m_W^{PDF} ~ 2 MeV with LHeC

Probe BSM via electroweak precision tests ((m_w, sin²θ_w

PRL 120(2018) 241802

 $Z/v* \rightarrow \mu\mu$

 $MC \sin^2 \theta_W^P = 0.2300$

 $\sin^2 \theta_{\text{eff}}^{\text{lep}} = k_{\text{lep}} \sin^2 \theta_{\text{W}} (k_{\text{lep}} \text{ e.w. corrections})_{\textbf{B}}$

Tension between the most sensitive results

Methods @ pp colliders:

- * Forward Backward Asymmetry (A_{FR}) in Z (→II) decays⁰⁵ template fits (vs m_{II}, in bins of y_{II})
- * Angular decomposition of the Drell-Yan cross-section $q\bar{q} \rightarrow Z/v* \rightarrow II$
- PDF source of main systematics
- Projections from LHCb (1808.08865): advantages @ higher Z rapidities:
 - the forward-backward asymmetry is larger
 - the parton direction is better known
- A future e⁺e⁻ collider may reach $\Delta \sin^2 \frac{h^2}{6} \sim 5 *10^{-6}$

DØ 8.6 fb

 $\chi^2/\text{ndof} = 1.1$

Probe BSM via electroweak precision tests (mw, sin² 0 w,

Direct measurements: from decay products: world comb. (Mar 2014)

Indirect measurements: fit tt X-sections + theory

- Extract the pole mass m_t pole

• CMS (1904.05237): simultaneous α_s and m_t^{pole}

extraction using NLO calculations

Tot. uncertainty below 1 GeV

m_{top} summary, √s = 7-13 TeV

from CMS (TOP-19-005):

 m_t @ high Lorentz boosts: a single jet include all $t \rightarrow bW \rightarrow bqq$ 'products

promising observable could calculated at particle level from theory

 $m_t^{boost} = 172.56 \pm 2.47 \text{ GeV}$ (36 fb⁻¹ @13 TeV)

Top measurements for couplings & BSM

Rare processes: tttt (4 tops)

 10^{2}

 10^{1}

CMS Preliminary

 $137 \text{ fb}^{-1} (13 \text{ TeV})$

Xγ tŧVV

- Not yet observed : σ_{tttt} (SM) ~ 12 fb
- Sensitive to BSM effects way to assess the top Yukawa coupling
- CMS full Run 2 data (ss dileptons & ≥ 3 l+jets); fit many signal and control regions
- Significance: 2.6 (2.7) σ obs(exp.)

BDT (postfit)

Nonprompt lep

PAS-TOP-18-003

- Top Yukawa coupling: |y_t/ySM_t| < 1.7 @ 95% comparable with recent CMS limit from tt kinematic distributions in lepton+jet : |y_t/ySM_t| < 1.67 (1907.01590) complementary to coupling extraction in ttH & tH
- Limits on (pseudo) scalar A/H \rightarrow tt

Top properties in tt: charge asymmetry, A_C

0.1

0.05

- In SM A_C results from the interference of HO amplitudes in qq and qg initial states
 - \rightarrow t prefers q direction Small effect, enhanced @ high tt mass (m_{tt}) and longitudinal $\overline{t}t$ boost (β_{tt})
- Enhanced in some BSM theories
- ATLAS + CMS results @ 8 TeV in agreement with NLO and NNLO but also compatible with zero A_C

New ATLAS result full Run 2 data: lepton + jet with -0.05 resolved and boosted jet lept+jets

ATLAS-CONF-2019-026 Inclusive A_C is four $_{0.014}$ ATLAS Preliminary NNLO QCD + NLO EW standard deviation_{0.012} √s ≤ 13 TeV, 139 fb⁻¹ Powheg+Pythia8 from zero Data (stat./total) & in agreement with 0.008 NNLO predictions + 0.006 **EW NLO** 0.004 0.002 → Limits on coeff. Inclusive dim-6 EFT operators C^{-}/Λ^{2}

800

m_{tr} (GeV)

1000

1200

m, [GeV]

ATLAS+CMS Lepton+jets $\sqrt{s} = 8 \text{ TeV}$

SM (QCD NLO + EW NLO) SM (QCD NNLO + EW NLO)

ATLAS+CMS

Light colour-octet

600

Heavy colour-octet

Single top cross section

q \bar{q}' \bar{q}' t

- Investigation of the Wtb vertex
- LHC best combined precision 7@8TeV: ATLAS+CMS X-section: ~ 7% (t-channel)

NLO+NLL predictions ~ 3 % (t-channel)

(f_{LV} form factor for BSM contributions)

■ Differential cross-section measurements: Ş better description with 4 Flavour than 5F scheme

Gauge boson couplings

Multi gauge boson production

- VV / Vy / yy / VVV (V=W, Z)
 - Investigate the non-abelian structure of the SM at the highest energy
- Sensitive to new physics via anomalous Triple (Quartic) Gauge Couplings (aTGC, a
- Dibosons: many measurements, NNLO necessary to describe data
- CMS: σ_{tot} (ZZ) with full Run 2 data. Uncertainties: stat ~ syst ~ lumi
- ATLAS measures the helicity fractions of W[±] and Z in WZ events in agreement with SN predictions. First step on the way to perform polarization measurements in VBS process.

Multi gauge boson production

ATLAS-CONF-2019-034

Di-boson Z(II) γ : new ATLAS **full Run 2 data**. Differential X-sections vs E_T^{γ} , $|\eta_{\gamma}|$, $p_T^{||\gamma|}$, $m(||\gamma|)$ ~ 5% experimental uncertainty in most of E_T^{γ} bins.

NNLO describes E_T^{γ} within uncertainties & improve data description

Tribosons: rare process

Recent ATLAS result finds 4.1 σ evidence
 (3.1 σ exp.) for WWW+WWZ+WZZ combined

- Recent CMS result (1905.04246, ~ 36 fb⁻¹ @ 13 TeV) focuses on WWW in the 2ss- and 3-lepton channed ^{4ℓ} Confidence intervals for aQGC (dim-8 operators, Combined more later). Limits on axion-like particles

Single gauge bosons & di-bosons with dijets

(EW Vjj & EW-VVjj)

- Vector Boson Fusion (EW-Vjj) and Vector Boson Scattering (EW-VVjj)
 - milestones studies of EW sector
 - sensitive to new physics in the 3 or 4 boson vertex
- VBF and VBS tagged by 2 jets with large separation in rapidity
 - Large mjj for leading two jets
 - Low jet activity in the central region
- "QCD-mediated" V+jj and VV+jj (interference!). Often largest background
 - perform common fit to signal and contr regions
- Observed :
- VBF: EW-Wjj and EW-Zjj (ATLAS&CMS)
- VBS: EW-ssWWjj(ATLAS&CMS)
 - EW-WZjj(ATLAS), EW-ZZjj (ATLAS)
- Evidence:
 - **VBS: EW-Zγjj (CMS)** @ 8 TeV & 13 TeV
- Agreement with SM predictions
 - → limits on aTGC and aQGC

W-VBF

iet

Observation of EWK-ZZjj & evidence EWK-Zγjj

CONF-STDM-2019-11

- ATLAS: observation of EWK-ZZjj with full Run 2 data (4l and llvv)
- Fit to a multi-variable combination (BDT):
- signal strength = 1.4 ± 0.4 Significance 5.5 (4.3) σ obs. (exp_o)_{id} = 0.82 ± 0.21 fb
- CMS: Evidence of EWK-Zγjj 36 fb⁻¹ @13 TeV (Z → II)
- 2 D fit to mjj & Δηjj:

signal strength = 0.64 + 0.23

 \rightarrow Significance 4.7 (5.5) σ obs. (exp.) combined with 8 TeV

Anomalous gauge boson couplings@ 13 TeV

New Physics added to the SM Lagrangian as higher dimensional operators:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=WWW,W,B} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j=1,2} \frac{f_{S,j}}{\Lambda^4} \mathcal{O}_{S,j} + \sum_{j=0,\dots,9} \frac{f_{T,j}}{\Lambda^4} \mathcal{O}_{T,j} + \sum_{j=0,\dots,7} \frac{f_{M,j}}{\Lambda^4} \mathcal{O}_{M,j}$$

Dimension-6 operators

-100

aC summary plots at: http://cern.ch/go/8ghC

Give rise to charged aTGC & aQGC

Dimension-8 operators: Give rise to aQGC

May 2019 May 2019 Central Fit Value [-1.2e+00, 1.2e+00 35.9 fb 8 TeV c_B/Λ^2 [-3.8e+00, 3.4e+00] 19.7 fb [-3.4e+00, 2.9e+00] 29.2 fb 8 TeV [-5.4e+00, 5.6e+00] 8 TeV 19.7 fb [-4.2e+00, 4.6e+00 8 TeV 19.4 fb [-6.2e-01, 6.5e-01] 13 TeV 35.9 fb -7.5e-01, 8.1e-01] 13 TeV -4.6e-01, 4.4e-01] 13 TeV 35.9 fb -1.2e-01, 1.1e-01 35.9 fb 13 TeV $c_{WWW}^{}/\Lambda^2$ -3.3e+00. 3.3e+00 13 TeV 35.9 fb -4.4e+00, 4.4e+00 8 TeV 19.7 fb 8 TeV [-3.7e+00, 4.0e+00] 19.7 fb [-2.1e+00, 2.4e+00 8 TeV 19.4 fb [-2.8e-01, 3.1e-01] 35.9 fb 13 TeV [-4.9e-01, 5.5e-01] 13 TeV 35.9 fb ZZ WV ZV [-6.1e-01, 6.1e-01] 35.9 fb -1.2e-01, 1.3e-01 13 TeV -2.7e+00, 2.6e+00 13 TeV www 35.9 fb [-9.9e+00, 9.0e+00] 8 TeV 19.7 fb 8 TeV [-1.1e+01, 1.2e+01] 19.7 fb ss WW [-5.9e+00, 7.1e+00] 19.4 fb [-8.9e-01, 1.0e+00] 13 TeV 35.9 fb [-1.5e+00, 1.9e+00] WZ 35.9 fb [-1.2e+00, 1.2e+00] 13 TeV 35.9 fb -2.8e-01, 2.8e-011 35.9 fb -9.3e+00, 9.1e+00 20.3 fb 8 TeV c_w/Λ^2 -3.8e+00, 3.8e+00 8 TeV 19.7 fb 5.9e+00, 1.1e+01 -2.8e+00, 3.0e+00 8 TeV 8 TeV 19.7 fb Ζγ Ζγ [-1.8e+00, 1.8e+00] 19.7 fb 8 TeV [-1.8e+00, 1.8e+00 8 TeV 20.2 fb -8.4e-01. 8.4e-011 13 TeV [-7.4e+00, 7.4e+00] 20.3 fb 8 TeV -4.0e+00, 4.0e+00 19.7 fb [-3.9e+00, 3.9e+00] 8 TeV 20.2 fb [-1.8e+00, 1.8e+00] 13 TeV

aTGC Limits @95% C.L. [TeV-2]

aC summary plots at: http://cern.ch/go/8ghC

-8.8e+00,

100

aQGC Limits @95% C.L. [TeV-4

 $t_{T,j}$

Conclusions

- LHC Run2 very successful → Large data sets available
- Improved performance
 - + Many important SM measurements with significantly increased precision
 - + Exploration of differential distributions in high p_T jet, photon, W, Z, top final state
 - + Many rare processes observed
- Major advances in techniques for theoretical calculations
 - → stringent test of SM
- EFT: starting to be able to fit Wilson coefficients in multiple sectors simultaneously Rich interplay between EW precision + Higgs + top + diboson fits.
- → EW & EFT fits: important tools to search for BSM Need theory guidance for the interpretation of experimental results
- Solid basis for the future of the our discipline (colliders & beyond colliders)

THANKS TO ALL MY ATLAS, CMS, LHCb, HERA & TEVATRON COLLEAGUES WHO PROVIDED ME WITH MATERIAL, COMMENTS & ANSWERS TO MY QUESTIONS

Additional recent results

Slide from Maria, Florencia, Nadjieh (CMS): Top mass from boosted top

- differential $t\bar{t}$ cross section as function of $m_{\rm jet}$
- boosted regime $(p_T > 400 \text{ GeV})$
- novel reconstruction using XCone
- $m_t = 172.56 \pm 2.47 \text{ GeV}$

Jets & azimuthal decorrelations

- $\Delta \phi_1$ = azimuthal angular separation Azimuthal decorrelations ($\Delta \phi_{12}$): sensitive to higher orders, parton showering and resummation
- pQCD fixed-order calculations unstable for $\Delta \phi_{12} \approx \pi$, → resummation of soft parton emissions approximated with parton shower evolution
- Normalized differential cross section vs $\Delta \phi_{12}$ in 2 (and 3 jets) events in nearly back-to-back jet topologies in bins of leading jet p_T

PH-2J PowHeg $2 \rightarrow 2$ NLO PH-3J Powheg 2→3 NLO

 $\Delta \phi_{12}$

between the leading jets

 $\Delta \phi_{12}$

Need to improve the modelling of the accompanying soft parton radiation because no model describes simultaneously the 2- and 3-jet measuremen (differences up to 15%)

Single gauge boson production: W

- Large data sets and accurate predictions
 - → stringent SM measurements
- Recent results:
- W charge asymmetry (ATLAS) vs $|\eta_u|$ discriminates among PDFs (asymm. uncertainty ~ 0.002 - 0.003)
- W+c-jet (CMS) use D*: tension with ATLASepWZ16 PDFs0.15 where strange-quark is unsuppressed @ at low x
- New PDF set: ATLASepWZWjet19 include W+jet data r_s reduced @ high x but still enhanced at low x

To be followed: understanding the strange quark in proton important for the $m_{W_{CMS}}$ measurement @ LHC

Single gauge boson production&decay: Z/γ*→ II

- dσ/dm_{II} for 15 < m_{II} < 3000 GeV (@ 13 TeV) in full phase space, corrected for FSR
- Agreement with SM theoretical predictions (large stat. uncertainties at the highest mas

Sizable effect from Photon-Induced (PI) contribution in the high- mass region (comparison with LUXqed PDF set)

Top (tt) cross section measurements

- σ_{tt} provides information on:
- Top mass, α_{s,} □ gluon PDF at hig ⅓ ϰ₀³
- Most precise σ_{tt} measurements: ~ 4% limited by luminosity & experimental systematics. Agreement with full NNLO+NNLL calculations
- σ_{tt} (ee, eμ, μμ) multi-differential cross section :

normalised single, double & triple differential cross sections. Many variables unfolded to parton and particle level (p_T^t, y_T^t, M_{tt}, p_T^{tt}, ...)

- MCs have harder top p_T spectræg wrt data, effect increases with higher m(tt) values
- Significant impact on gluon PDF at large x, when fitting simultaneously α_s, m_t pole, and PDFs

Associate production: tt + Z

 10^{-1}

@ 13 TeV:

$$\sigma_{ttZ} = 1.00^{+0.06} \text{ (stat)}^{+0.07} \text{ (syst) pb}$$

consistent with SM

ttZ inclusive & differential cross sections:

tŧW

tŧZ

tW

ttV

1-& 2-d fits to extract limits on coefficients of dimension-6 operators in an Effective Field Theory

tΖį

tŧΗ

Data 4.5 - 4.6 fb⁻¹

Data 20.2 - 20.3 fb⁻¹

Data 3.2 - 79.8 fb⁻¹

tīγ

Top (tt) + heavy flavours

- Background to ttH(bb) & tt tt
- Challenges: multiple scale and many processes contribute
- ATLAS: dilepton and lepton+jets
 CMS: dilepton and all-jet
- Measure integrated and (ATLAS) differential cross sections
- Dilepton and lepton+jets :
 - cross sections higher than predicted the still compatible within uncertainties
 - fair agreement for the shapes for monotonic of the predictions
- Tensions between all-jet cross section measurements and predictions

Rare processes with one top: tZq, tyq

- Sensitive to BSM effects
 - tZq & tγq include TGC diagrams (WWZ & WWγ)
 - modified production could indicate FCNC
 - tγq sensitive to the top quark charge
- pp → tZq . Best signal region: 3 leptons, 2-3 jet (1b) Main bkg: diboson BDT (CMS), NN (ATLAS) trained in each signal region
- **ATLAS 36 fb⁻¹: first evidence : 4.2 (5.4)** σ obs (expt)
- CMS 77.4 fb⁻¹: observation > 5 σ obs.

SM value: 81 ± 4 fb

Rare processes: tttt (4 tops)

CMS Preliminary

- $\sigma_{\text{tttt}}^{\text{NLO}}(\text{SM}) = 9.2 \text{ fb } (30\% \text{ scale uncertainties})$
- Sensitive to Beyond SM effects Way to asses the top Yukawa coupling
- **ATLAS 36 fb**⁻¹:

Template fit to $H^{had} = \sum p_T^j$ in bins of b-jet multiplicity 2.8 (1.0) σ obs(exp.) significance

CMS 137 fb⁻¹: 2.6 (2.7) σ,
 BDT and cut base approach. Fit many regions
 2.6 (2.7) σ obs(exp.) significance
 |y_t/ySM_t|<1.7

BDT (postfit)

 $137 \text{ fb}^{-1} (13 \text{ TeV})$

Quantum Interference Between Single and Doubly Resonant Top Quark
Phys. Rev. Lett. 121, 152002 (2018)

Identical WWbb final states,

tt-tW interference

Good description by predictions including recent fixed-order calculations of the full next-to-leading-order (NLO) pp → l+vl-v bb process

Top properties

Top properties: polarisation, spin correlations

- t and t produced non polarised (QCD conserves
 C and P) with t and t spins correlated.
- → Test of BSM effects via EFT, (ChroMagnetic Dipole Moment ..)
- Top decays before hadronisation
 - \rightarrow Spin information preserved in the decay products use $\Delta \phi_{II}$ ($\&\Delta \eta_{II}$) between leptons in tt (dilepton)
- A more direct study extracts 15 coefficients characterising spin dependence of tt production. Large uncertainties still.
- $\Delta \phi_{\parallel}$ tension between NLO & data likely explained by missing higher order
- Polarisation, CMDM, in agreement with SM within uncertainties

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Slide

from

Christian

Multi gauge boson production

- VV / Vy / yy / VVV (V=W, Z)
 - Investigate the non-abelian structure of the SM at the highest energy
- Sensitive to new physics via anomalous Triple (Quartic) Gauge Couplings (aTGC, a

Dibosons:

- Many measurements
- NNLO necessary to describe data

Larger samples allow for differential cross sections

Ratio with respect to NNLO

VBS with semileptonic final states: V(jj) V(lv/l)+jj

- Semi-leptonic final states complementary to fully-leptonic :
 - The latter less background, good for observation (first VBS observation, 2017, in W±W±jj →l±l±jj, most favorable EW/QCD production ratio)
 - The former higher BR, probe higher energy tails where aQCG effects more promine
- Latest results (VZjj & VWjj): exploit boosted topology V→jj (V as large merged jet)
- **Recent ATLAS (1905.07714)** ~ 36 fb⁻¹ @ 13 TeV: also resolved jets. 0/1/2 leptons
 - Use MVA including quark-gluon separation
 - 2.7 σ significance (2.5 σ exp.)
- Recent CMS (1905.07445):
 - Main aim: search for aQGCs (& Higgs[±])
 - Fit to m_{WV} and m_{ZV} distributions
 - Uncertainties: QCD scale, PDF uncertainties, 10⁻¹ V+jets background shape
 - Stringent constraints on parameters for dimension 8 operators

