



## Searches for Supersymmetry



Isabell-A. Melzer-Pellmann on behalf of the ATLAS and CMS collaborations



### **Supersymmetry**



- Minimal supersymmetric model (MSSM): Assign to each SM particle a SUSY particle with spin differing by ½
- Higgs field is doubled → 5 physical Higgs bosons

mixed  $(\widetilde{B}, \widetilde{W}, \widetilde{H}_d, \widetilde{H}_u)$ 

SM particles





mixed  $\widetilde{W}^{\pm}$ ,  $\widetilde{H}^{\pm}$ 

SUSY particles



### **Supersymmetry**



- Minimal supersymmetric model (MSSM): Assign to each SM particle a SUSY particle with spin differing by ½
- Higgs field is doubled → 5 physical Higgs bosons

mixed ( $\widetilde{B}$ ,  $\widetilde{W}$ ,  $\widetilde{H}_d$ ,  $\widetilde{H}_u$ )

SM particles



mixed  $\widetilde{W}^{\pm}$ ,  $\widetilde{H}^{\pm}$ 

In the MSSM, **proton could decay** through SUSY particle exchange with new couplings:

$$W = \lambda'' UDD + \lambda' LQD + \lambda LLE$$



ightharpoonup R = 1: SM particle

→ R=-1: SUSY particle



SUSY particles



### **Why Supersymmetry?**



- Lightest SUSY particle in R-parity conserving models:
  - → viable dark matter candidate
- Corrections to the Higgs mass cancelled by extra loops with SUSY particles

$$\underline{H}$$
 - -  $\underline{f}$  - -  $\underline{H}$ 





- Neutrinos masses are expected in SUSY
- **☆** Unification of the forces at about 10<sup>16</sup> GeV

SUSY is not just a model, it's a consistent theory







### **Search strategy**



- Cross section drives sensitivity!
  - Mass reach for strong production higher than for electroweak production
- Systematic approach to cover all possible production and decay modes including dedicated searches targeting special scenarios (e.g. compressed spectra, long-lived particles)
- Address both R-parity conserving and violating models
- Determination of main backgrounds from data in control regions
- Analysis results presented using simplified models





### **Overview of discussed searches**



#### Focus on new results mostly with full Run 2 data:

### **☆** Strong production

- Generic searches for gluino and squark production
  - Full-hadronic channel
  - Leptonic channels (2 same-sign leptons and 3 leptons)

### 💢 Electroweak production

- Neutralino-Chargino production
- Slepton production

### Long-lived particles

- Delayed photons
- Displaced opposite-sign leptons
- Disappearing tracks





### **Search for gluinos and squarks**





- ullet Missing transverse momentum  $(p_T^{miss})$  from the lightest SUSY particle (LSP) escaping the detector
- → Large hadronic activity due to heavy SUSY particles
- (Large) number of jets
- Possibly (several) b-tagged jets





## Search for gluinos and squarks: Full-hadronic final state





- Lost lepton events (mainly W+jets, ttbar):
  - Determined in single-lepton control region in data
- Irreducible background with genuine  $p_T^{miss}$ , mainly  $Z \rightarrow vv$ 
  - Determined in a Z → II control sample in data
- QCD multijet events
  - Determined from data

Signal regions categorized in bins of:

→ H<sub>T</sub>, H<sub>T</sub><sup>miss</sup>, number of jets and b-jets







## Search for gluinos and squarks: Limits on gluino production











Exclude gluinos decaying to 1st or 2nd generation below 2 TeV, and below 2.2 TeV for decay to 3rd generation squarks



## Search for gluinos and squarks: Limits on squark production











Exclude 1<sup>st</sup> and 2<sup>nd</sup> generation squarks below 1.75 TeV (1.3 TeV if only one squark is light), and bottom squarks below 1.25 TeV



**ATLAS-CONF-2019-015** 

## Search for gluinos and squarks: Leptonic final states



- Require **2 same-sign leptons** with  $p_{\rm T}$  > 20 GeV (allow 3<sup>rd</sup> lepton with  $p_{\rm T}$  > 10 GeV)
  - Five complementary signal regions for a coarse scan of the phase space:

| SR        | $n_{\ell}$                                           | $n_b$ | $n_j$                                           | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | m <sub>eff</sub> [GeV] | $E_{ m T}^{ m miss}/m_{ m eff}$ |
|-----------|------------------------------------------------------|-------|-------------------------------------------------|----------------------------------------|------------------------|---------------------------------|
| Rpv2L     | $\geq 2 (\ell^{\pm}\ell^{\pm})$                      | ≥ 0   | $\geq 6 (p_{\mathrm{T}} > 40 \mathrm{GeV})$     | _                                      | > 2600                 | _                               |
|           |                                                      |       |                                                 |                                        |                        |                                 |
|           |                                                      |       |                                                 |                                        |                        |                                 |
| Rpc2L0b   | $\geq 2 (\ell^{\pm}\ell^{\pm})$                      | = 0   | $\geq 6 (p_{\mathrm{T}} > 40 \mathrm{GeV})$     | > 200                                  | > 1000                 | > 0.2                           |
| Rpc2L1b   | $\geq 2 (\ell^{\pm}\ell^{\pm})$                      | ≥ 1   | $\geq$ 6 ( $p_{\mathrm{T}} > 40 \mathrm{GeV}$ ) | _                                      | _                      | > 0.25                          |
| Rpc2L2b   | $\geq 2 (\ell^{\pm}\ell^{\pm})$                      | ≥ 2   | $\geq$ 6 ( $p_{\mathrm{T}} > 25 \mathrm{GeV}$ ) | > 300                                  | > 1400                 | > 0.14                          |
|           |                                                      |       |                                                 |                                        |                        |                                 |
| Rpc3LSS1b | $\geq 3 \left(\ell^{\pm}\ell^{\pm}\ell^{\pm}\right)$ | ≥ 1   | no cut but veto 81                              | $GeV < m_{e^{\pm}e^{\pm}} <$           | < 101 GeV              | > 0.14                          |











## Search for gluinos and squarks: Leptonic final states





#### Main backgrounds:

- WZ+jets in SR with 0 b-jets and ttbar+V in SRs with b-jets
   Both estimated from simulation with theory cross section
- Events with charge flipped electron (mainly ttbar and Z+jets)
  - Estimated from data by weighting OS data by the flip rate
- Fake / non-prompt leptons
  - Estimated from data





# Search for gluinos and squarks: Limits on gluino production



#### R-Parity conserving model





### R-Parity violating model





Exclude gluinos with mass below 1.65 (1.6) TeV in RPC (RPV) model



## Search for gluinos and squarks: Limits on squark production











Exclude sbottoms and stops with mass below 750 GeV



### **Summary on gluino production**







Seection of observed mints at 95% c.L. (theory uncertainties are not included). Probe up to the quotient mass limit for right LSr's timess stated otherwise.

The quantities  $\Delta M$  and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to  $\Delta M$ , respectively, unless indicated otherwise.



Sensitivity depends strongly on the underlying model Simplified models often assume branching ratios of 100% for one decay channel, expect lower sensitivity if several decay channels are possible



## Dedicated stop searches: Results with full Run 2







# Dedicated stop searches: Single-lepton final state







- Special selections to enhance sensitivity:
  - → W corridor: soft b-tags
  - top corridor: ISR jet +soft lepton
  - High stop mass region: resolved and boosted top tagging
- Main backgrounds:
  - → 2-lepton events (mainly ttbar and Wt production) with one lost lepton
    - Determined in dilepton control region in data
  - **→ Events with one genuine lepton** 
    - ttbar taken from simulation, W+jets from 0-b control region in data



# **Dedicated stop searches: Single-lepton final state**





|   | N <sub>J</sub> | $t_{mod}$ | M <sub>lb</sub> [GeV] |
|---|----------------|-----------|-----------------------|
| Α | 2–3            | > 10      | ≤ 175                 |
| В | 2–3            | > 10      | > 175                 |
| С | ≥ 4            | ≤ 0       | ≤ 175                 |
| D | ≥ 4            | ≤ 0       | > 175                 |
| Е | ≥ 4            | 0–10      | ≤ 175                 |
| F | ≥ 4            | 0–10      | > 175                 |
| G | ≥ 4            | > 10      | ≤ 175                 |
| Н | ≥ 4            | > 10      | > 175                 |
|   |                |           | •                     |

X0: Inclusive

X1: Untagged X2: Boosted top

X3: Resolved top

I:  $N_J \ge 5$ ,  $N_{b,med} \ge 1$ J:  $N_J \ge 3$ ,  $N_{b,soft} \ge 1$ 



| 1000                          | CMS Preliminary 137 fb <sup>-1</sup> (13 TeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Jec 1200                      | $pp \to \tilde{t}, \tilde{t} \to t \tilde{\chi}_1^0$ Approx. NNLO+NNLL exclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 Q                                     |
| 5<br>9<br>9<br>9<br>1000<br>E | Observed $\pm 1 \sigma_{\text{theory}}$ Expected $\pm 1 \sigma_{\text{experiment}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>setion [                       |
| 800                           | o de la companya de l | 10 <sup>-1</sup> Scoot                   |
| 600                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o uo jimil                               |
| 400                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | upper li                                 |
| 200                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% CL upper limit on cross section [pb] |
| (                             | 200 400 600 800 1000 1200 140<br>m <sub>\tilde{t}</sub> [GeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 <sup>-4</sup> 0,                      |

Exclude top squarks below 1.2 TeV



# Dedicated stop searches: Single-lepton final state







Sensitivity enhanced by neural network









# **Dedicated stop searches: Summary**





Stringent limits on top squark production, also in compressed region

CMS

PAS-SUS-19-009

# Specific stop search: Focus on decay to tau leptons





CMS PAS-SUS-19-003

#### Electroweakino-fermion interaction includes gauge and Yukawa coupling:

- Tau-Yukawa coupling large for high tanβ
- Large tanβ can make the  $\widetilde{\tau_1}$  much lighter than 1<sup>st</sup> or 2<sup>nd</sup> generation sleptons
- Higgsino-like gauginos preferentially couple to third generation fermions





$$m_{\widetilde{\tau}_1} - m_{\widetilde{\chi}_1^0} = 0.5 \left( m_{\widetilde{\chi}_1^{\pm}} - m_{\widetilde{\chi}_1^0} \right)$$

Exclude top squarks decaying to staus with masses below 1.1 TeV



### **Summary on squark production**







## **EWKino production**



Mass splitting of the EWKinos depends on  $M_1$ ,  $M_2$ ,  $\mu$  and tan  $\beta$ 

#### Bino-Wino case

$$\widetilde{\chi_3^0}$$
,  $\widetilde{\chi_4}$ ,  $\widetilde{\chi_2^\pm}$ 

$$\widetilde{\chi_4^0}$$

$$M_2$$
  $\widetilde{\chi_2^0}, \widetilde{\chi_1^{\pm}}$ 

$$\widetilde{\chi_3^0},\widetilde{\chi_2^{\pm}}$$

$$M_1 \longrightarrow \widetilde{\chi_1}$$

$$\mu$$
  $\widetilde{\chi_1^0}, \widetilde{\chi_2^0}, \widetilde{\chi_1^\pm}$ 

Larger mass gap between  $\widetilde{\chi_1^0}$  and  $\widetilde{\chi_2^0}, \widetilde{\chi_1^\pm}$ 

$$\rightarrow p_T^{miss}$$
 + leptons

$$\widetilde{\chi_1^0} \ \widetilde{\chi_2^0}$$
 and  $\chi_1^\pm$  almost mass-degenerate

- experimentally challenging
- → possibly long-lived particles



## **Chargino-Neutralino production:**

1 lepton + bb (Bino/Wino)



Here:  $\widetilde{\chi_2^0}\widetilde{\chi_1^\pm}$  are purely Wino and decay to W and h

Decay of  $\widetilde{\chi^0_2}$  via h dominant for many choices of the parameters if mass-splitting between the two lightest neutralinos is larger than h mass and the higgsinos are heavier than the winos





#### Main backgrounds:

- ttbar, tW, W+jets
  - normalized in control regions





## Chargino-Neutralino production: 1 lepton + bb (Bino/Wino)





#### Signal regions dedicated to low mass, medium mass and high mass region:











Exclude  $\widetilde{\chi_2^0}$   $\widetilde{\chi_1^\pm}$  with mass below 750 GeV





## Chargino-Neutralino production: soft-lepton final state (Higgsino)



Here:  $\widetilde{\chi_2^0}$ ,  $\widetilde{\chi_2^0}$  and  $\widetilde{\chi_1^\pm}$  are higgsino-like and nearly mass-degenerate



- Flectrons with  $p_T > 4.5$  GeV and  $|\eta| < 2.47$  (or matched track with  $p_T > 1$  GeV)
- Muons with  $p_T > 3$  GeV and  $|\eta| < 2.5$  (or matched track with  $p_T > 2$  GeV)









## Chargino-Neutralino production: soft-lepton final state (Higgsino)



#### **\*** [

#### **Backgrounds:**

- Reducible background from fake/non-prompt leptons (mainly from heavy flavor decay)
  - Determined from data
- Irreducible background with two prompt leptons (ttbar, tW, WW, WZ,
   Z→ ττ+jets)
   Determined with MC normalized to data in dedicated CRs





Exclude higgsinos below 162 GeV at a mass splitting of 10 GeV, and extending down to a mass splitting of 2.6 GeV at the LEP limit



### **Slepton production**



- $ightharpoonup^{*}$  Select two opposite-sign same-flavor leptons, large  $p_T^{miss}$
- $ightharpoonup Main discriminating variable: <math>M_{
  m T2}$
- Main irreducible background:
  - WZ, WW, ZZ, and ttbar production
    - Both estimated using simulation, normalised using a simultaneous likelihood fit to data in dedicated CRs
- Main reducible background:
  - Fake non-prompt leptons
    - Estimated from data

Slepton masses up to 700 GeV excluded assuming three generation of mass-degenerate sleptons





CMS-PAS-SUS-18-006

### **Search for tau sleptons**



- ATLAS: Full Run 2 result in full-hadronic channel
- CMS: 2016+17 with combination of full-hadronic and semileptonic channel
- **Main backgrounds:** 
  - Multijet events  $\rightarrow$  one jet misidentified as  $\tau$  (data driven)
  - W+jets → at least one jet misidentified as τ (control regions)



Interpretation in mass-degenerate scenario:





ATLAS analysis excludes tau sleptons with masses between 120 and 390 GeV, by including the semileptonic analysis CMS closes the hole between 90 and 120 GeV



### **Search for tau sleptons**



- ATLAS: Full Run 2 result in full-hadronic channel
- CMS: 2016+17 with combination of full-hadronic and semileptonic channel
- Main backgrounds:

  - W+jets → at least one jet misidentified as τ (control regions)



Interpretation in left-handed scenario:



ATLAS analysis excludes for the first time tau sleptons in the left-handed scenario with masses between 150 and 300 GeV



### **Search for long-lived particles**





- Very weak χ<sub>1</sub><sup>0</sup>-gravitino coupling [GMSB]
  - $\rightarrow$  Non pointing  $\gamma$  or Z
- RPV: Lifetime proportional to RPV coupling
  - $\rightarrow$  Displaced vertex if  $\lambda$ ,  $\lambda$ ',  $\lambda$ '' ~0(10<sup>-5</sup>)
- **Low mass difference**, e.g  $\Delta$ M( $\chi^{\pm}\chi^{0}$ )~100 MeV
  - → Soft pion emission, **disappearing track**
- Stable Massive Particle
  - → Stable R-hadron (gluino or squark), sleptons





### **Delayed photons**



- Weak coupling of the neutralino to the gravitino in GMSB models can lead to long  $\tilde{\chi}_1^0$  lifetimes:
  - Impact angles pointing significantly away from the primary interaction vertex
  - Delayed arrival times at the ECAL (order of ns)
     Time resolution of the ECAL for a single object: 400 ps









### **Delayed photons**







Requirement of single photon increases sensitivity to long lifetimes

Exclude neutralinos with masses up to 320, 525, 360, and 215 GeV with  $c\tau$  of 10 cm, 1 m, 10 m, and 100m



CERN-EP-2019-

### **Displaced leptons**



Squark production and RPV decay of bino-like neutralino through RPV coupling:

$$W_{\rm LLE} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k$$



• 
$$\mathcal{B}(\tilde{\chi}_1^0 \to eev) = \mathcal{B}(\tilde{\chi}_1^0 \to e\mu v) = 0.5$$

$$\mathcal{B}(\tilde{\chi}_1^0 \to \mu \mu \nu) = \mathcal{B}(\tilde{\chi}_1^0 \to e \mu \nu) = 0.5$$



- 💢 Special trigger on muon chamber tracks and photons
- Special large-radius tracking and displaced vertex reconstruction
- **Main backgrounds:** 
  - Cosmic-ray muons and random crossing of two uncorrelated leptons

For quark mass of 1.6 TeV,  $c\tau$  between 3 mm and 1 m are excluded for a 1.3 TeV neutralino







CMS-SUS-19-005

### **Disappearing tracks**





Sensitivity to models with long-lived charginos

 Extend sensitivity, since other analysis cuts can be loosened when adding disappearing track requirement



Categorization into short (Pixel-only), medium (<7 layers), and long (at least 7 layers) tracks</p>

#### Main background:

- Fake tracks, charged pions and leptons
  - Estimated with from a control region in data with looser short track requirements







Sensitivity to gluino and neutralino masses is enhanced



### **Summary of long-lived results**





### Impossible to cover all signatures in one talk!

#### Overview of CMS long-lived particle searches



Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

**July 2019** 



### Summary



- 💢 A number of analyses already updated with full Run 2 luminosity
- Searches cover simplified models and specific signatures
- More Run 2 results to come in the next months
- 💢 Experiments are already in preparation of Run 3
- HL-LHC will be important to cover rare processes

ϔ Stay tuned!





- Overview of current SUSY results:
  - → ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
  - ▶ CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
- HL-LHC studies: https://cds.cern.ch/record/2651134/files/1902.10229.pdf









### **ATLAS-CONF-2019-015**





#### Systematic uncertainties:





## **ATLAS-CONF-2019-014**





#### Preselection

|                                                                            | Preselection requirements                                                 |                                                 |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| Variable                                                                   | $2\ell$                                                                   | $1\ell 1T$                                      |
| Number of leptons (tracks)                                                 | = 2 leptons                                                               | $= 1 \text{ lepton and } \ge 1 \text{ track}$   |
| Lepton $p_{\rm T}$ $[GeV]$                                                 | $p_{\mathrm{T}}^{\ell_1} > 5$                                             | $p_{\mathrm{T}}^{\ell} < 10$                    |
| $\Delta R_{\ell\ell}$                                                      | $\Delta R_{ee} > 0.30,  \Delta R_{\mu\mu} > 0.05,  \Delta R_{e\mu} > 0.2$ | $0.05 < \Delta R_{\ell \mathrm{track}} < 1.5$   |
| Lepton (track) charge and flavor                                           | $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$                                  | $e^{\pm}e^{\mp} \text{ or } \mu^{\pm}\mu^{\mp}$ |
| Lepton (track) invariant mass [GeV]                                        | $3 < m_{ee} < 60, 1 < m_{\mu\mu} < 60$                                    | $0.5 < m_{\ell \mathrm{track}} < 5$             |
| $J/\psi$ invariant mass [GeV]                                              | veto $3 < m_{\ell\ell} < 3.2$                                             | veto $3 < m_{\ell \text{track}} < 3.2$          |
| $m_{	au	au}$ [GeV]                                                         | < 0  or  > 160                                                            | no requirement                                  |
| $E_{ m T}^{ m miss}~{ m [GeV]}$                                            | > 120                                                                     | > 120                                           |
| Number of jets                                                             | $\geq 1$                                                                  | $\geq 1$                                        |
| Number of b-tagged jets                                                    | =0                                                                        | no requirement                                  |
| Leading jet $p_{\rm T}$ [GeV]                                              | $\geq 100$                                                                | $\geq 100$                                      |
| $\min(\Delta\phi(\text{any jet},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}))$ | > 0.4                                                                     | > 0.4                                           |
| $\Delta\phi(j_1,\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$                  | $\geq 2.0$                                                                | $\geq 2.0$                                      |



### **Remaining open questions**









### Corrections to the Higgs mass









## Search for gluinos and squarks: Full-hadronic final state



### 💢 Main backgrounds:

- Lost lepton events (mainly W+jets, ttbar):
   Determined in single-lepton CR, with transfer factor determined in simulation
  - transfer factor determined in simulation (corrected for measured differences of lepton efficiencies)

- Irreducible background with genuine  $p_T^{miss}$  (e.g.  $Z \rightarrow vv$ )
- Instrumental background (mainly QCD multijet events with mismeasured jet(s))
  - Determined with rebalance & smear method







## **Search for gluinos and squarks**





**→** Transverse mass  $m_T$ :

$$m_T^2 = (E_{T,1} + E_{T,2})^2 + (\vec{p}_{T,1} + \vec{p}_{T,2})^2$$

- $ightharpoonup m_{\mathrm{T}}$  has an endpoint at mother particle mass
- Constrains e.g. background from leptonic W decays
- **→** Stransverse mass *M<sub>T2</sub>*:

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\,\text{miss}\,\text{X}(1)} + \vec{p}_{\text{T}}^{\,\text{miss}\,\text{X}(2)} = \vec{p}_{\text{T}}^{\,\text{miss}}} \left[ \max \left( M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)} \right) \right]$$





- ◆ In case of more than two jets these are clustered into two pseudo-jets, each representing an event hemisphere
- **→ Effective mass m**<sub>eff</sub>:
  - Sum of  $H_T = \sum p_T^{jet}$  and  $p_T^{miss}$
  - → Correlated to the mass of the highest colored object, the LSP and their mass difference → typically m<sub>eff</sub> will peak at  $1.8(m_{SUSY}^2 m_{LSP}^2)/m_{SUSY}$



# Chargino-Neutralino production: 3-lepton final state (Bino/Wino)



- ightharpoonup Here:  $ilde{\chi_2^0}$   $ilde{\chi_1^\pm}$  are purely Wino and decay to W and Z
- Investigate 3-lepton final state (ISR jet enhances signature)



Refined analysis on full Run 2 data compatible with SM expectation



Exclude  $\widetilde{\chi_{2}^{0}}\widetilde{\chi_{1}^{\pm}}$  with mass below 350 GeV







# Slepton production: small mass splitting



Soft lepton search with tuned signal regions can be interpreted in direct slepton pair production model

Slepton signal regions:

|                                             | Slepton SR Requirements                        |                                                               |  |
|---------------------------------------------|------------------------------------------------|---------------------------------------------------------------|--|
| Variable                                    | $\text{Low-}E_{	ext{T}}^{	ext{miss}}$          | ${ m High-}E_{ m T}^{ m miss}$                                |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]      | [150, 200]                                     | > 200                                                         |  |
| $m_{\mathrm{T2}} \; [\mathrm{GeV}]$         | < 140                                          | < 140                                                         |  |
| $p_{\mathrm{T}}^{\ell_2} \; [\mathrm{GeV}]$ | $> \min(15, 7.5 + 0.75 \times (m_{T2} - 100))$ | $> \min(20, 2.5 + 2.5 \times (m_{\text{T2}} - 100))$          |  |
| $R_{\rm ISR}$                               | [0.8, 1.0]                                     | $[\max(0.85, 0.98 - 0.02 \times (m_{\text{T}2} - 100)), 1.0]$ |  |







Exclude sleptons below 256 GeV at a mass splitting of 10 GeV, and extending down to a mass splitting of 590 MeV at the LEP limit



arXiv:1905.13059; CMS-SUS-17-007

## Chargino-Neutralino production in Vector Boson Fusion







# Neutralino-Neutralino production: photon final state (Higgsino)



In case the lightest neutralino decays further to gravitino and SM-like  $H(\rightarrow \gamma \gamma)$  or Z



Exclude neutralinos below 300 GeV (100% decay to H) and 180 GeV (50% decay to H and 50% decay to Z)