Beyond Standard Model Theory

Giuliano Panico
Università di Firenze and INFN Firenze

EPS-HEP — Ghent, Belgium — 15/7/2019
BSM Theory before LHC

- partners of the top (partners of gauge bosons)
- Higgs
- low-energy SUSY
- compositeness
- extra-dimensions
- Naturalness
Main actors related to naturalness: \textbf{stops} and \textbf{gluinos}

- They control the corrections to the Higgs mass and the amount of tuning

\[
\delta m_H^2 \sim \frac{3y_t^2}{8\pi^2} m_t^2 \log(\Lambda/m_{\tilde{t}})
\]

\[
\delta m_H^2 \sim \frac{\alpha s y_t^2}{\pi^3} m_{\tilde{g}}^2 \log^2(\Lambda/m_{\tilde{g}})
\]

- Current exclusions

\[m_{\tilde{t}} \gtrsim 1 \text{ TeV}\quad m_{\tilde{g}} \gtrsim 2 \text{ TeV}\]

imply a minimal tuning

\[\frac{1}{\Delta} \equiv \frac{m_H^2}{\delta m_H^2} \sim \text{few\%}\]
Main actors related to naturalness: fermionic top partners

- They control the generation of the Higgs potential

\[\delta m^2_H \sim \frac{3}{16\pi^2} y_t g_* m_*^2 \]

- Current exclusions

\[m_{X_{5/3}, T, B} \geq 1.3 \text{ TeV} \]

imply a minimal tuning

\[\frac{1}{\Delta} \equiv \frac{m^2_H}{\delta m^2_H} \sim \text{few} \% \]
A Change of Attitude

LHC results stimulated a healthy change of attitude in the particle theory community

- explore alternative theory paradigms (eg. alternatives to classical naturalness)
- abandon unmotivated prejudices (eg. minimality)
- enlarge the set of signatures to look for at colliders
- theory work closer to experiments (eg. working on strategies for data analysis, proposing new experiments)
- look for BSM physics in non-colliders experiments (eg. table-top, cosmological tests, …)
BSM Theory after LHC Run II

- Naturalness
 - fermionic partners
 - massive vectors
 - axions
 - dark photons
 - neutral naturalness
 - low-energy SUSY
 - compositeness
 - extra-dimensions

- Modified Naturalness
 - extended Higgs sectors
 - phase transitions
 - gravitational waves
 - long-lived particles
 - landscape
 - UV-naturalness

- Un-Naturalness
BSM Theory after LHC Run II

Naturalness
- stops
- gluinos
- neutral naturalness
- low-energy SUSY
- compositeness
- extra-dimensions

Modified Naturalness
- fermionic partners
- massive vectors
- extended Higgs sectors
- phase transitions
- relaxion
- gravitational waves
- long-lived particles
- landscape
- UV-naturalness

Un-Naturalness
Is Theory still important?

Theory continues to play an important role in BSM exploration

- **naturalness** is still an important question to answer (although maybe no more the strongest guideline)

- **models** are useful to explore signatures and provide a framework for searches

- theory is needed to devise effective *model-independent search strategies* (blind search likely to miss crucial observables to look at)

- theory is needed for an *interpretation* of the experimental results
Naturalness and Predictivity
Naturalness is a very deep question: what we want to know is whether the value of the Higgs mass can be explained by the UV theory.

- in the presence of high tuning, even measuring with very good precision the fundamental parameters, we can not determine the Higgs mass

loss of predictivity
Naturalness and Predictivity

Two opposite possibilities

Full Predictivity

Higgs mass and EW scale linked to *new dynamics at the TeV*

New symmetry ensures stability of Higgs potential
(SUSY, spont. broken global symmetry,...)

Main signatures:
partners of top quark
(stops, fermionic top partners,...)

- low-energy SUSY (eg. MSSM)
- composite Higgs

No Predictivity

Higgs mass as a *free parameter*, can only be measured experimentally but not explained

No specific (low-energy) signatures

- landscape & anthropic
- UV-naturalness (no high-energy thresholds destabilize Higgs mass)
Naturalness and Predictivity

Two opposite possibilities … and a third way in between

Full Predictivity
- Higgs mass and EW scale linked to new dynamics
- New symmetry ensures stability of Higgs potential
- Main signatures: partners of top quark (stops, fermionic top partners)
 - low-energy SUSY
 - composite Higgs

Semi-Predictivity
- Higgs mass determined dynamically, only overall size explained but not exact value
- New axion-like particle
 - relaxion

No Predictivity
- Higgs mass as a free parameter, can only be measured experimentally but not explained
- No specific (low-energy) signatures
 - landscape & anthropic
 - UV-naturalness (no high-energy thresholds destabilize Higgs mass)
Modifying classical scenarios

Classical scenarios “rescued” by modified (typically non-minimal) constructions

Example: **Maximally symmetric composite Higgs**

- standard symmetry pattern
 \[
 \text{SO}(5)_L \times \text{SO}(5)_R \rightarrow \text{SO}(4)
 \]

- maximal symmetry pattern
 \[
 \text{SO}(5)_L \times \text{SO}(5)_R \rightarrow \text{SO}'(5)
 \]

- maximal symmetry reduces radiative contributions to Higgs mass term
- minimal tuning can be realized (analogy with old little Higgs idea)
- top partners can have larger masses (\sim few TeV) with acceptable amount of tuning
Elusive new-physics

Strong collider constraints come from the fact that top partners are charged under QCD and therefore easily detectable.

What if partners are neutral under QCD?

→ **Neutral naturalness** models implement this idea through symmetries

The Twin Higgs construction

• discrete Z_2 symmetry ensures stability of Higgs mass (thanks to enhanced $SU(4)$ symmetry in Higgs mass term)

$$V(H, H') \sim \frac{\Lambda^2}{16\pi^2} y_t^2 (|H|^2 + |H'|^2)$$

• top partners are neutral under ordinary QCD, more difficult to be produced at colliders

• many implementations of this idea in different frameworks
Higgs mass is dynamically selected through a backreaction mechanism

[i] rolling relaxion field controls Higgs mass

[ii] when Higgs VEV turns on a backreaction potential is induced

[iii] evolution of relaxion is stopped

❖ vacuum is not uniquely selected: range of vacua possible
 ‣ quantum corrections do not allow to determine stopping vacuum
 ‣ many vacua with similar properties
 ‣ UV parameters determine only overall size of Higgs mass

[Graham, Kaplan, Rajendran ’15]
Many open questions:

- source of friction (needed to dissipate kinetic energy)
 (inflation? particle production? …)

- origin of relaxion field
 (difficulties in identifying with QCD axion, new dark sector needed)

- complete implementation still missing

Interesting phenomenology:

- new physics not necessarily at the TeV scale

- relaxion field typically light and very weakly coupled
 (difficult to test at colliders)

- non-collider searches typically necessary to test models
 (table-top axion experiments, cosmological consequences,….)
Beyond Naturalness
BSM is not just naturalness

Many open questions imply physics beyond the Standard Model

- dark matter
- neutrino masses
- inflation
- baryogenesis
- strong CP problem
- hierarchy problem

Energy scale [TeV]

Only naturalness (assuming full predictivity) seems to point towards a sharp range close to LHC energy…

… but different kinds of new physics can show up at other experiments and even (accidentally) at LHC
EW baryogenesis and Higgs sector

Interesting way to realize baryogenesis is via a strong \textit{EW phase transition}

- modification/extension of Higgs sector
 (SM EW phase transition is cross over \rightarrow not enough breaking of thermal equilibrium)

- new sources of CP violation \hspace{1em} (too weak in SM)

Example: \textbf{Higgs sector extended with additional singlet}

- a two-step transition can give a strong 1st-order EW phase transition

- in the presence of additional CP violation baryogenesis can be achieved

\[\text{[Anderson, Hall '92; Choi, Volkas '93; Espinosa, Quiros '93; Profumo, Ramsey-Musolf, Shaughnessy '07, ...]}\]
EW baryogenesis and Higgs sector

Interesting way to realize baryogenesis is via a strong EW phase transition

- modification/extension of Higgs sector
 (SM EW phase transition is cross over → not enough breaking of thermal equilibrium)

- new sources of CP violation (too weak in SM)

Example:
- a two-step transition can give a strong 1st-order EW phase transition
- in the presence of additional CP violation, baryogenesis can be achieved

- can be probed at (future) colliders looking for the additional singlet

Example: Higgs sector extended with additional singlet

[Anderson, Hall '92; Choi, Volkas '93; Espinosa, Quiros '93; Profumo, Ramsey-Musolf, Shaughnessy '07, …]

![Graph showing production cross-sections at hadron colliders for various modes of singlet production with $H_S=2$.](image)

Fig. 5: Production cross-sections at hadron colliders for various modes of singlet production with $HS=2$. These calculations were computed at LO with MadGraph5.

- $\sqrt{s} = 100$ TeV
 - can be probed at future colliders looking for the additional singlet

...
EW baryogenesis and Higgs sector

Interesting way to realize baryogenesis is via a strong EW phase transition

- modification/extension of Higgs sector
 (SM EW phase transition is cross over → not enough breaking of thermal equilibrium)

- new sources of CP violation

Example:

- a two-step EW phase transition
 - in the first stage, a strong 1st-order EW phase transition
 - in the second stage, a first-order phase transition

- can be probed at (future) colliders looking for the additional singlet

- possible tests through gravitational waves
A viable flavor structure is an essential ingredient for all BSM scenarios

- many flavor puzzles still open
- high precision in new flavor data gives strong indirect tests for NP

Recent development: Improved bound on electron EDM

\[|d_e| < 9.4 \cdot 10^{-29} \, \text{e cm} \quad \rightarrow \quad |d_e| < 1.1 \cdot 10^{-29} \, \text{e cm} \quad \rightarrow \quad |d_e| \lesssim 0.3 \cdot 10^{-30} \, \text{e cm} \]
A viable flavor structure is an essential ingredient for all BSM scenarios

- many flavor puzzles still open
- high precision in new flavor data gives strong indirect tests for NP

Recent development: **Improved bound on electron EDM**

\[
|d_e| < 9.4 \cdot 10^{-29} \text{ e cm} \quad \rightarrow \quad |d_e| < 1.1 \cdot 10^{-29} \text{ e cm} \quad \rightarrow \quad |d_e| \lesssim 0.3 \cdot 10^{-30} \text{ e cm}
\]

- can test NP in the 10 TeV range even through two-loop effects

- relevant implications also for EW baryogenesis models
Model-Independent Approaches
Model-independent approaches try to look for New Physics in a virtually unbiased way.

Advantages:

- only relies on SM (+ minimal set of additional assumptions)
- can look for wider range (virtually any) NP model
- might discover unthought-for NP

Possible approaches:

- precision measurements (through Effective Field Theory formalism)
- anomaly detection
Even if NP is too heavy to be produced directly we can still look for deviations from SM in low-energy observables!

- NP parametrized in a model-independent way through extension of SM with higher-dimensional operators:

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_{i}^{\text{dim}-6} + \sum_i \frac{d_i}{\Lambda^4} \mathcal{O}_{i}^{\text{dim}-8} + \cdots \]

- precision EW and Higgs measurements can test possible deviations
Even if NP is too heavy to be produced directly we can still look for deviations from SM in low-energy observables!

- NP parametrized in a model-independent way through extension of SM with higher-dimensional operators

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i^{dim-6} + \sum_i \frac{d_i}{\Lambda^4} \mathcal{O}_i^{dim-8} + \cdots \]

- precision EW and Higgs measurements can test possible deviations

Precision program effective also at hadron colliders (including LHC)

- new physics effects grow with energy

\[\frac{\Delta \mathcal{O}}{\mathcal{O}} \sim \frac{E^2}{\Lambda^2} \]

 - big boost with collider energy
 - steady improvement with luminosity
Simplest example:

Oblique parameters in di-lepton Drell-Yan

[Farina, GP, Pappadopulo, Ruderman, Torre, Wulzer '16]

\[\Delta \mathcal{L} = -\frac{W}{4m_W^2}(D_\rho W^a_{\mu\nu})^2 - \frac{Y}{4m_W^2}(\partial_\rho B_{\mu\nu})^2 \]

- LHC improves the LEP bounds by one order of magnitude

Precision Measurements

\[\text{DY are already competitive with LEP constraints.} \]
Simplest example: Oblique parameters in di-lepton Drell-Yan

\[\Delta \mathcal{L} = - \frac{W}{4m_W^2} (D_\rho W^a_{\mu\nu})^2 - \frac{Y}{4m_W^2} (\partial_\rho B_{\mu\nu})^2 \]

- LHC improves the LEP bounds by one order of magnitude
- can complement direct searches (eg. heavy resonances or difficult signals)
Anomaly Detection

Search for **departures** from a given **reference model** (in our case the SM) with no need to specify alternative theory

- ideally sensitive to *any* new-physics model

machine learning used to compare experimental data with reference model

- limitation: can not be used for exclusion (negative results are not informative)
Anomaly Detection

Still at an early-development level, but many interesting directions…

- CWoLa Hunting [Collins, Howe, Nachman '18]
- Novelty Detection [Hajer et al. ’18; Pierini et al. in progress]
- Distribution Comparison [D’Agnolo, Wulzer ‘18]
- Non-QCD jets [Aguilar-Saavedra et al ’17; Heimel et al. ’18]
- Gaussian Mixture pdf [Kuusela et al.’11]
- Nearest-Neighbours pdf [De Simone, Jacques ‘18]
Conclusions
Conclusions

Last years saw explosion of research directions in BSM physics

Naturalness remains an important question and fruitful guideline…

- (minimal) classical scenarios under pressure
- several alternatives are being explored

… but a **broader search program** is clearly necessary

- many open questions in SM
- new search strategies at colliders (eg. model independent approach)
- beyond-collider probes