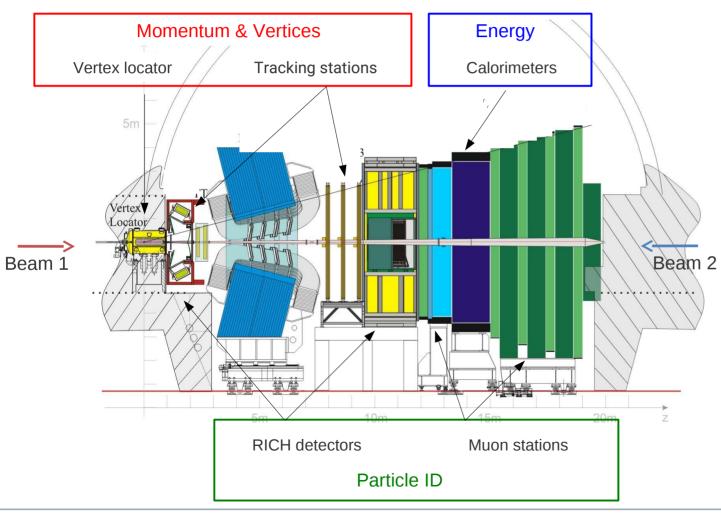
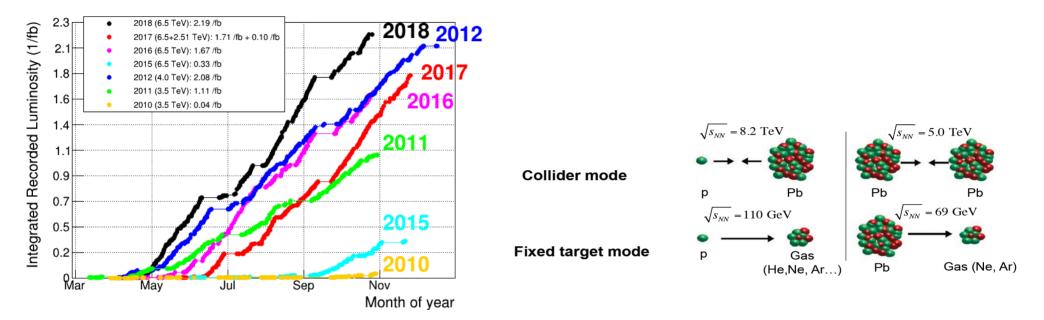


Highlights from the LHCb experiment

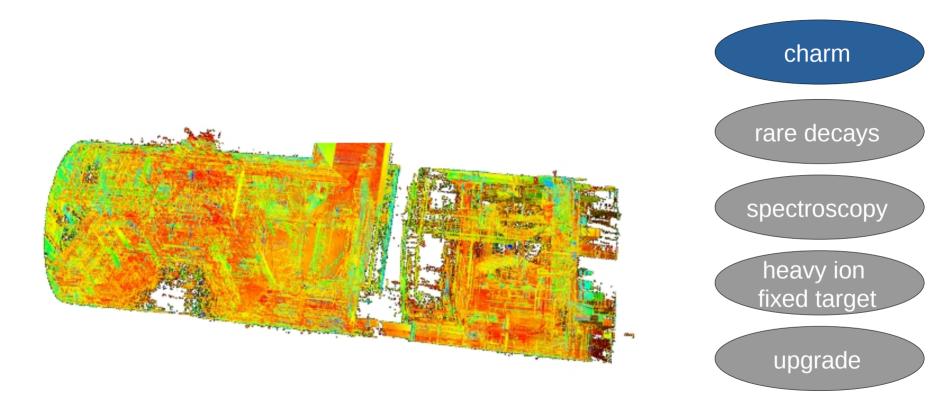


EPS 2019, July 10-17 2019 Katharina Müller on behalf of the LHCb collaboration Physik Institut, University of Zurich


forward arm spectrometer for precision measurements (2< η <5)

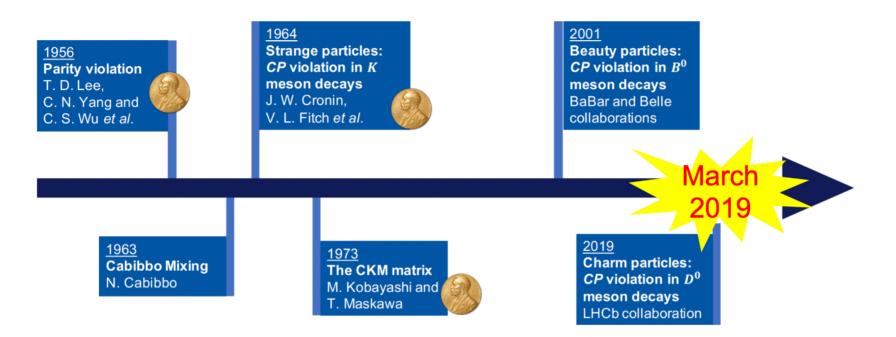
- good vertex and impact parameter resolution ($\sigma(IP)$ = 15 ±29/p_T µm)
- excellent momentum resolution $(\sigma(m_{_{\rm B}}) \sim 25 \text{ MeV/c}^2 \text{ for 2-body decays})$
- excellent particle ID (μ ID 97% for ($\pi \rightarrow \mu$) misID of 1-3%)
- stable running conditions constant µ
- trigger on small \textbf{p}_{τ} and low mass objects
- real time analysis alignment and calibration fully automated

EPS 2019, July 16, 2019


LHCb has recorded about 9 fb⁻¹ of pp collisions

1 fb⁻¹ @ 7 TeV 2 fb⁻¹ @ 8 TeV 6 fb⁻¹ @ 13 TeV – Run 2

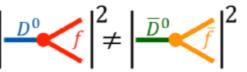
plus various datasets of proton-lead, lead-lead collisions as well as fixed target datasets: pNe, pHe, pAr, PbAr


\rightarrow LHCb a multipurpose detector in the forward region

- Observation of CP violation in charm [Phys. Rev. Lett. 122 (2019) 211803]
- Oscillations of charm mesons [Phys. Rev. Lett 122 (2019) 231802]
- A_{Γ} in $D^0 \rightarrow K^+K^-$, $\pi + \pi^-$ [LHCb-CONF-2019-001]

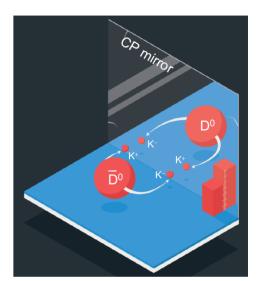
- CPV in Kaons and B mesons is well established both are down type quarks
- charm contains an up-type quark
- SM predicts it to be at 10⁻³ 10⁻⁴ level
- LHC is a charm factory, with billions of charm decays in LHCb

Check Observation of CP violation in charm


charm decays allow CP violation to be probed in the up-sector \rightarrow complementary to studies in K and B systems

expected to be very small in the SM (10⁻³ - 10⁻⁴ level), but theory predictions are not very precise (large long distance effects) time dependent CP asymmetries

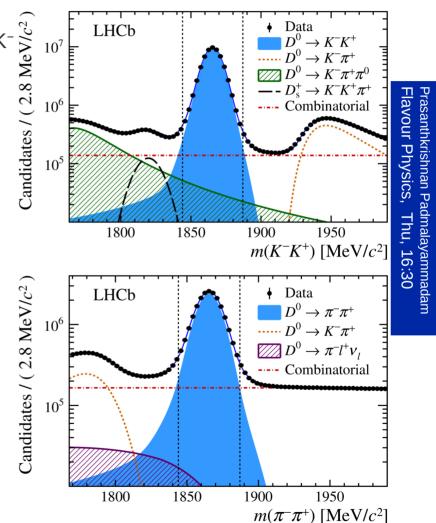
$$A_{CP}(f;t) = \frac{\Gamma(D^{0}(t) \rightarrow f) - \Gamma(\overline{D^{0}(t)} \rightarrow f)}{\Gamma(D^{0}(t) \rightarrow f) + \Gamma(\overline{D^{0}(t)} \rightarrow f)}$$


sensitive to

- direct CP-violation (a_{CP}^{dir})
- indirect CP-violation (a_{CP}^{indir}) (CP-violation in mixing or in the interference between mixing and decay)

$$\left| \frac{\overline{D}^{0} D^{0}}{f} \right|^{2} \neq \left| \frac{D^{0} \overline{D}^{0}}{f} \right|^{2}$$

Check Observation of CP violation in charm


full Run 2 data 5.9 fb⁻¹

count how many D⁰ and anti-D⁰ decay into $\pi^+\pi^-$ and K⁺K⁻ $\overset{\circ}{\searrow}$ should be equal if matter = antimatter

experimentally: easier to measure (time integrated) difference in CP asymmetry:

$$\Delta A_{CP} = A_{CP} (K^{-}K^{+}) - A_{CP} (\pi^{-}\pi^{+})$$

- many systematics cancel at first order
- initial flavour of D meson tagged by charge of π in prompt decays (D^{*+} \rightarrow D⁰ π ⁺), and by the muon charge in secondary production (B⁰ \rightarrow D⁰ μ ⁻X)

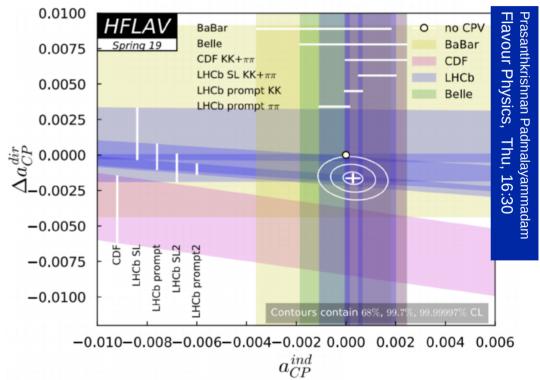
LHCD Observation of CP violation in charm

Run 2 result:

 $\Delta A_{CP} = (-18.2 \pm 3.2 \text{ (stat)} \pm 0.9 \text{ (syst)})10^{-4} \pi \text{-tag}$

 $\Delta A_{CP} = (-9 \pm 8 \text{ (stat)} \pm 5 \text{ (syst)})10^{-4} \mu$ -tag

compatible with previous LHCb result and world average


combination with Run 1 result

 $\Delta A_{CP} = (-15.4 \pm 2.9)10^{-4}$

 $\rightarrow~5.3~\sigma$ difference from 0

 \rightarrow roughly compatible with SM predictions WA dominated by LHCb

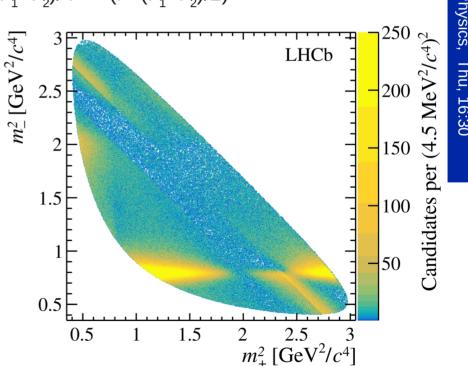
uncertainties of SM predictions larger than data

→ new window opened to investigate matter-antimatter asymmetry

HCD Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

neutral flavoured mesons can oscillate between their particle and antiparticle states

 \rightarrow the physical mass eigenstates are linear combinations of the weak eigenstates $|D_{1,2}\rangle\equiv p|D^0\rangle\pm q|\overline{D}{}^0\rangle$


with masses $m_{_1}$ and $m_{_2}$ and decay widths $\Gamma_{_1}\text{+}\Gamma_{_2}$

mixing parameters $x \equiv (m_1 - m_2)c^2/\Gamma$ and $y \equiv (\Gamma_1 - \Gamma_2)/\Gamma$ ($\Gamma = (\Gamma_1 + \Gamma_2)/2$) x determines the oscillation rate

x is very small for charm mesons but x and CPV can be enhanced by the presence of new particles beyond the SM

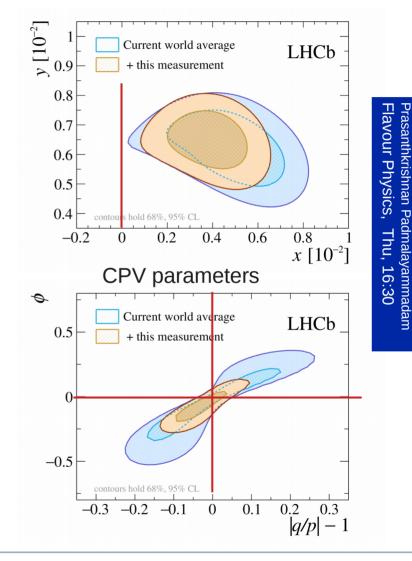
CPV can occur in the mixing $\rightarrow\,$ oscillation rates differ for mesons and antimesons

```
LHCb Run 1, decay: D^{0} \rightarrow K_{s}^{0}\pi^{-}\pi^{+}
yields: prompt 1.3M, secondary 1M candidates
```


LHCD Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

[Phys. Rev. Lett 122 (2019) 231802]

model independent approach (bin-flip method)


→ most precise determination of CP averaged normalized mass difference $x=(m_1-m_2)c^2/\Gamma$ by a single experiment

> $X_{CP} = [2.7 \pm 1.6 \pm 0.4] \times 10^{-3}$ $y_{CP} = [7.4 \pm 3.6 \pm 1.1] \times 10^{-3}$

if CP symmetry in mixing and interference is conserved: $x_{_{CP}} = x, y_{_{CP}} = y$

 $x_{CP} = (3.9^{+1.1}_{-1.2}) \times 10^{-3}$ new world average

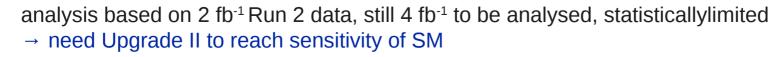
 $\rightarrow\,$ new world average provides first evidence of mass difference between the neutral charm mesons

LHCD THCD Measurement of CPV parameter A_{Γ} in $D^0 \rightarrow K^+K^-$, $\pi + \pi^-$

[LHCb-CONF-2019-001]

 A_r probes CPV in mixing and interference

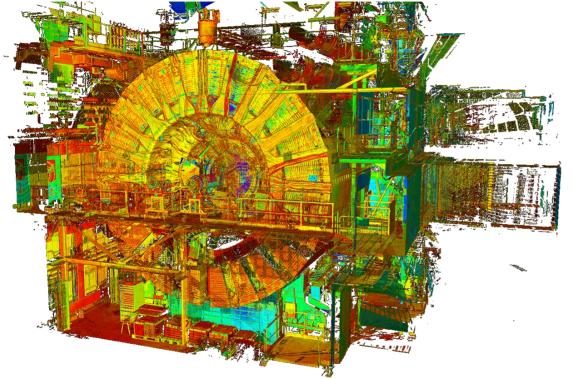
$$A_{CP}(f,t) \approx A_{CP}^{decay} - A_{\Gamma}(f) \frac{\langle t \rangle_f}{\tau_D^0}$$


SM predictions: $\approx 3 \times 10^{-5}$ [arXiv:1812.07638] A_r required input to measure CPV in decay from ΔA_{CP}

→ measure time dependent CP asymmetry


 $A_{\Gamma}(K^{+}K^{-}) = (1.3 \pm 3.5 \pm 0.7) 10^{-4}$ $A_{\Gamma}(\pi^{+}\pi^{-}) = (11.3 \pm 6.9 \pm 0.8) 10^{-4}$

combined with previous LHCb result


 $A_{\Gamma}(\pi\pi + KK) = (0.9 \pm 2.1 \pm 0.7) \, 10^{-4}$ $\Delta A_{\Gamma} = A_{\Gamma}(KK) - A_{\Gamma}(\pi\pi) = (-8.6 \pm 5.0 \pm 0.5) \, 10^{-4}$

EPS 2019, July 16, 2019

LHCP Precision in beauty – covered in more detail in Johannes' talk

- B_s mixing phase Φ_s [arXiv:1903.05530, arXiv:1906.08356]
- Phase Φ^{sss} in $B_s \rightarrow \phi \phi$ decays [LHCb-PAPER-2019-019]
- New measurement of R(K) [Phys. Rev. Lett. 122 (2019) 191801]
- Search for Lepton flavour violating decays [arXiv:1905.06614, LHCB-PAPER-2019-022]

charm

beauty

spectroscopy

heavy ion

fixed target

upgrade

LHCD Combination of γ measurements

tension (2 σ) between B⁺ and B_s⁰ results

tension (2 σ) between direct measurements and indirect constraints from UT

LHCb: new measurement in $B^0 \rightarrow DK^{*0}$ ($D \rightarrow K\pi$, KK, $\pi\pi$) [arXiv:1906.08927] Contours contain the 68.3%, 95.5% and 99.7% C.L. ⊡350F LHCb LHCb $\delta^{DK^{*0}}_{B}$ Preliminary B_s^0 decays 0.8 B^0 decays 250 decays 0.6 Combination 200 150 0.4 68.3% 100 0.2 50 95.5% 0 50 100 150 20 40 80 100 120 140 60 160 180 γ [°] γ [°] $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$ $\gamma = (71.1^{+4.6}_{-5.3})^{\circ}$ **HFLAV** from UT (CKM fitter) $\gamma = (65.8^{+1.0}_{-1.7})^{\circ}$

B mixing phase Φ from B $\rightarrow J/\psi$ KK and B $\rightarrow J/\psi\pi\pi$ [arXiv: 1903.05530] [arXiv: 1906.08356] measure the phase difference between the two processes ϕ_{dec} B⁰ $\Phi_{s} = -36.8^{+9.6}_{-6.8}$ mrad (CKM Fitter) SM prediction highly sensitive to NP contributions /eronika Chobanova lavour Physics, Thu, 9:20 $\phi_{\sf min}$ φ_{dec} LHCb uses two channels: $B_{s} \rightarrow J/\psi$ KK and $B_{s} \rightarrow J/\psi \pi \pi$ $\Delta \Gamma_s [{ m ps}^{-1}$ high yield, clean signature HFI AV 0.14 **D0 8 fb**⁻¹ Sprina 2019 \rightarrow very high precision measurements 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ flavour tagging from decay of other 0.12 b hadrons in the event CMS 19.7 fb⁻¹ analysis part of Run 2 (2 fb⁻¹) 0.10 CDF 9.6 fb⁻¹ combined with Run 1 Combined $\Phi_{s} = (-41 \pm 25) \text{ mrad}$ 0.08 LHCb 4.9 fb⁻ (still 4 fb not analysed) ATLAS 99.7 fb 0.06

-0.4

-0.2

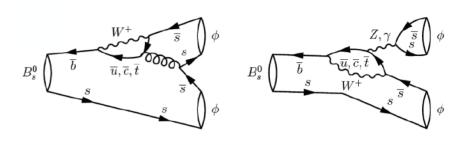
-0.0

0.2

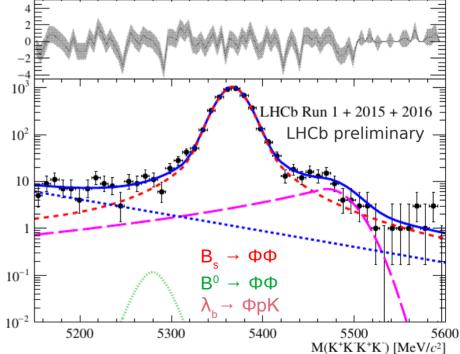
0.4

 $\phi_s^{c\bar{c}s}$ [rad]

HFLAV combination: $\Phi_s = (-55 \pm 21) \text{ mrad}$


EPS 2019, July 16, 2019

LHCD THCD Measurement of CP violation in $B_s \rightarrow \Phi\Phi$


[LHCb-PAPER-2019-019]

Enhanced sensitivity to NP since decay is dominated by penguin loop

SM prediction |Φ_s^{sss}|< 20 mrad [arXiv:0810.0249 Phys.Rev.D80:114026,2009]

time dependent angular analysis, 2 fb⁻¹ Run 2 $\Phi_s^{SSS} = -73 \pm 115 \pm 27 \text{ mrad}$ $|\lambda| = -0.99 \pm 0.05 \pm 0.01$ (LHCb preliminary) 10

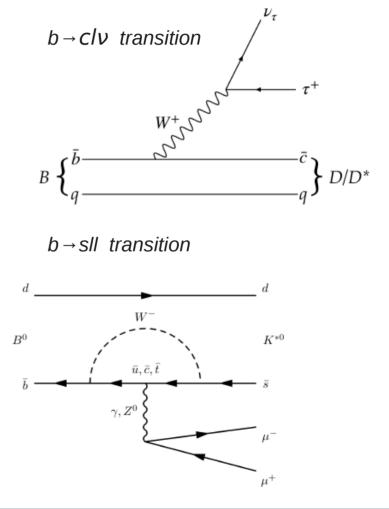
Louis Henry Flavour Physics, Thu, 11:40 Test of lepton flavour universality

test of LFU in various B decays with leptons in the final state

Charged current (Semileptonic decays) tree-level decays $b \rightarrow clv$, testing third generation BR of few %, precise prediction in SM

 $R(D^{(*)}) = \frac{BR(B \to D^{(*)} \tau \bar{v}_{\tau})}{BR(B \to D^{(*)} \mu \bar{v}_{\mu})} = 0.252 \pm 0.003(SM)$

Neutral currents (Rare decays)


 $b \rightarrow sll$

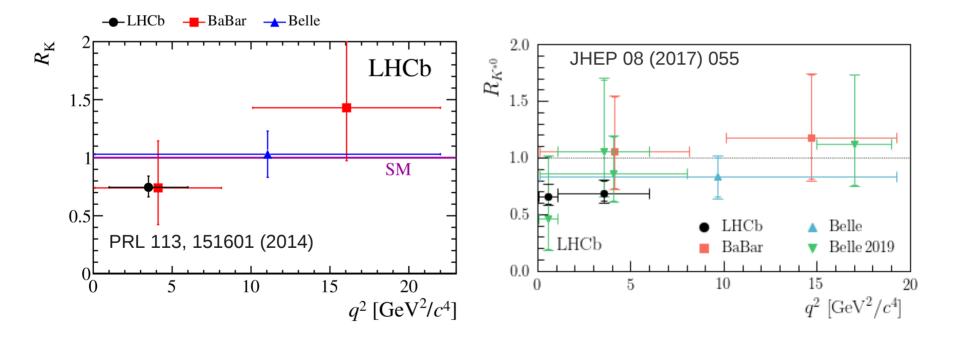
forbidden at tree-level in the SM

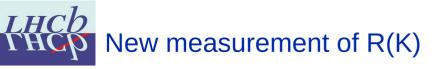
 \rightarrow FCNC only at loop level \rightarrow BR 10⁻⁷ \div 10⁻⁶

theoretically clean

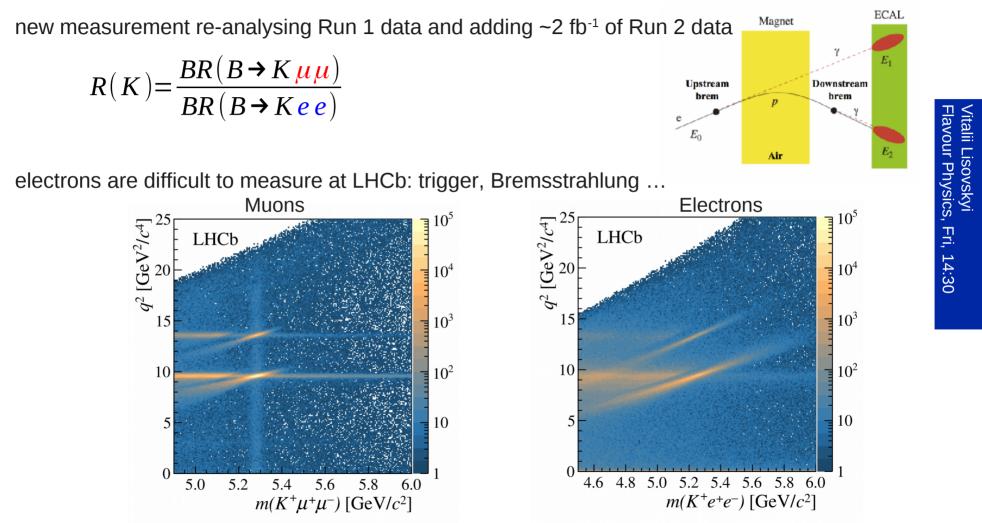
$$R(K^{(*)}) = \frac{BR(B \to K^{(*)} \mu \mu)}{BR(B \to K^{(*)} e e)} = 1 \pm \underbrace{O(10^{-3})}_{\text{neglect lepton mass}} \pm \underbrace{O(10^{-2})}_{\text{QED}}$$

[EPJ C76 (2016) 8, 440]

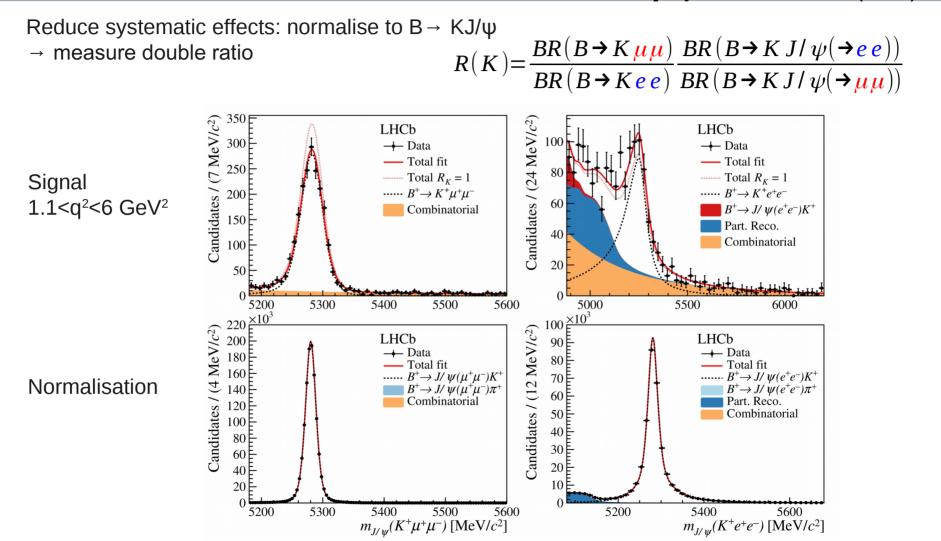




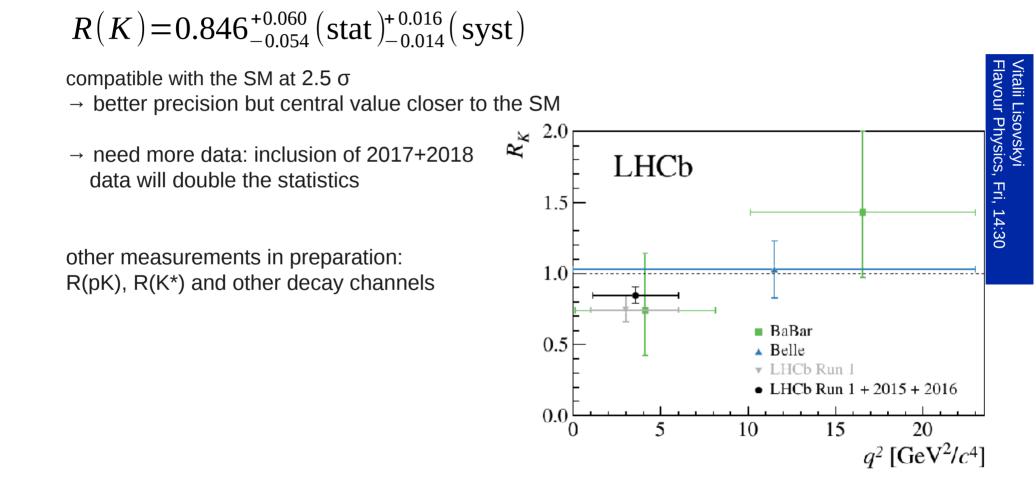
test the LFU in FCNC decays $b \rightarrow sI^+I^-$


Run 1 result: old results for R(K) and R(K*)

$$R(K^{(*)}) = \frac{BR(B \rightarrow K^{(*)} \mu \mu)}{BR(B \rightarrow K^{(*)} e e)} = 1 \pm \underbrace{O(10^{-3})}_{\text{neglect lepton mass}} \pm \underbrace{O(10^{-2})}_{\text{QED}}$$



[Phys. Rev. Lett. 122 (2019) 191801]



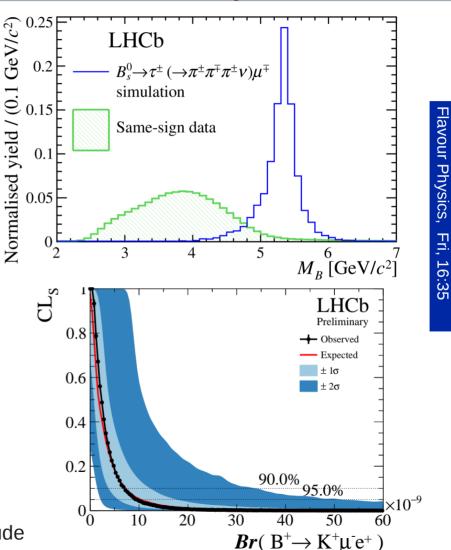
[Phys. Rev. Lett. 122 (2019) 191801]

Vitalii Lisovskyi Flavour Physics, Fri, 14:30

LHCP Search for Lepton flavour violating decays

 $\begin{array}{l} B^0_{\ (s)} \rightarrow \ T^{\pm} \mu^{\mp} \, [\text{arXiv:1905.06614}] \\ \text{BR in SM highly suppressed: $\sim 10^{-54}$} \\ \text{can be strongly enhanced in NP models:} \\ \text{up to } O(10^{-8} - 10^{-5} \,) \end{array}$

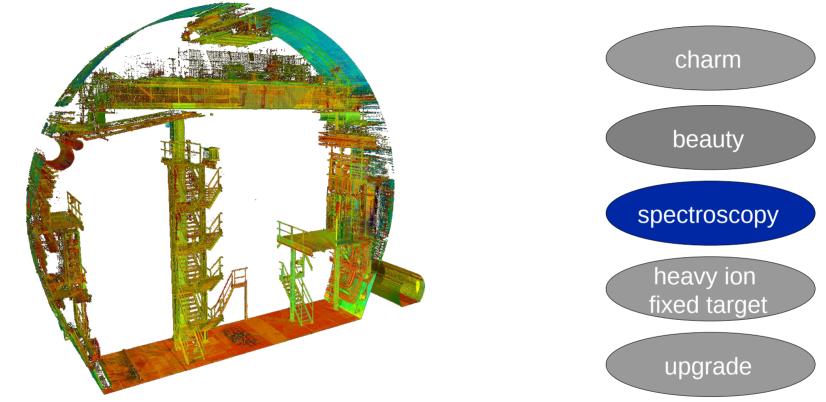
 $\begin{array}{l} B(B_{_{S}}\rightarrow \ \tau\mu)=3.4 \ \ 10^{_{-5}} @ \ 90\% \ \ CL \ (first \ limits) \\ B(B^{_{0}}\rightarrow \ \tau\mu)=1.2 \ \ 10^{_{-5}} @ \ 90\% \ \ CL \ (best \ limits) \end{array}$


 $\begin{array}{l} B^{+} \rightarrow \ K^{+}\mu^{\pm}e^{\mp} \, \mbox{[LHCB-PAPER-2019-022]} \\ NP \ models \ including \ leptoquarks, \ extended \\ gauge \ boson \ models \ or \ CP \ violation \ in \ the \\ neutrino \ sector \ predict \ branching \ fractions \\ 10^{-8} - 10^{-10} \end{array}$

search in full Run 1 dataset, no signal observed

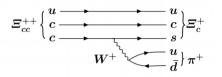
 $B(B^+ \rightarrow K^+ \mu^- e^+) = 7.0 \ 10^{-9} @ 90\% \ CL$

$B(B^+ \rightarrow K^+ \mu^+ e^-) = 7.1 \ 10^{-9} @ 90\% \ CL$

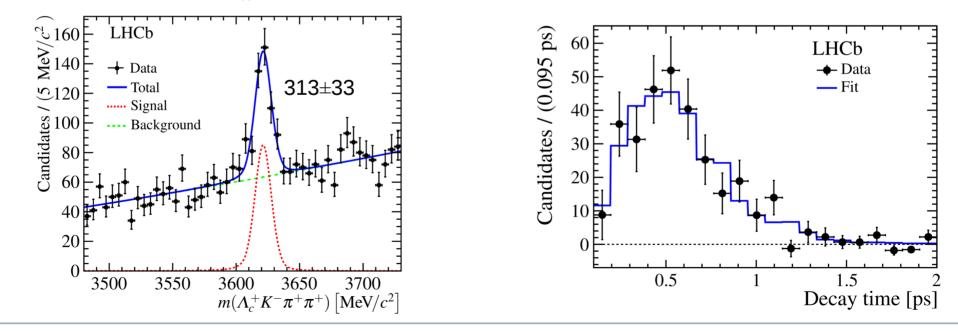

 \rightarrow limits improved by more than one order of magnitude

Marco

antimaria


LHCP Beauty in Spectroscopy

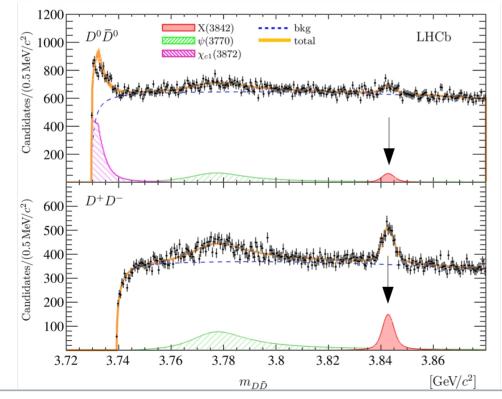
- Doubly charm baryons [Phys. Rev. Lett. 121 162002 (2018)], [PRL 121 (2018) 052002]
- Observation of a new state in DD mass spectrum [JHEP 07 (2019) 035]
- New resonances in the $\Lambda^0_{\ b}\pi^+\pi^-$ spectrum [LHCb-PAPER-2019-025]
- Observation of new pentaquark states [Phys. Rev. Lett. 122 (2019) 222001]

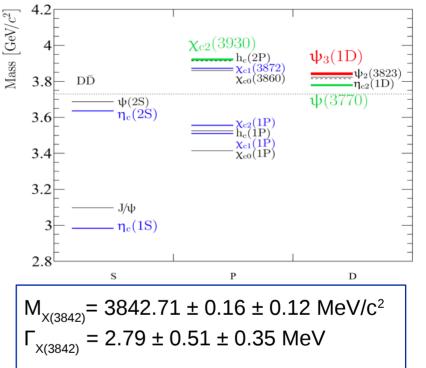

LHCD Doubly charmed baryons

ground states: Ξ_{cc}^{++} (ccu), Ξ_{cc}^{++} (ccd) and Ω_{cc}^{++} (ccs) only Ξ_{cc}^{++} discovered so far, search ongoing for Ξ_{cc}^{++} and Ω_{cc}^{+++}

first observed by LHCb in decay: $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ final state $\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$ [Phys. Rev. Lett. 121 162002 (2018)] m(Ξ_{cc}^{++}) = 3621. 40 ± 0. 72(stat) ± 0. 27 (syst) ± 0. 14 (Λ_{c}^{+}) MeV/c²

weakly decaying: $\tau(\Xi_{cc}^{++})= 0.256+0.024 - 0.022(stat) \pm 0.014(syst) ps$ [PRL 121 (2018) 052002] no signal found for: $\Xi_{cc}^{++} \rightarrow D^+(\rightarrow K^-\pi^+\pi^+) pK^-\pi^+$ [arXiv:1905.02421]




LHCD Observation of a new state in DD mass spectrum

[JHEP 07 (2019) 035]

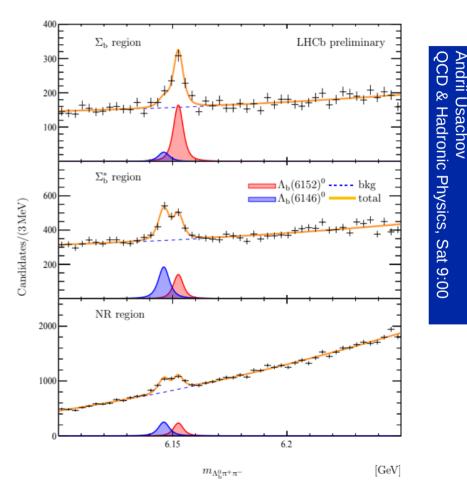
full Run1+Run2 dataset

 $\rightarrow\,$ new narrow state observed in the invariant mass spectra of D^0D^0 and D^+D^-

narrow width \rightarrow likely to be $\psi_3(1^3D_3) J^{PC} = 3^{--}$ \rightarrow first observation of a spin-3 charmonium state

In addition: first observation of prompt hadroproduction of $\chi_{c2}(3930)$ and $\psi(3770)$

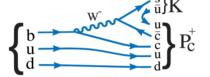
EPS 2019, July 16, 2019


LHCD New resonances in the $\Lambda_{b}^{0}\pi^{+}\pi^{-}$ spectrum

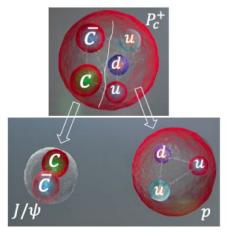
Full Run1+Run2 dataset

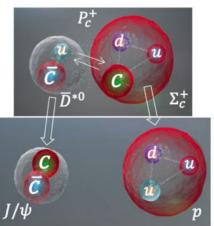
- → two new resonances in $\Lambda^0_{\ b}\pi^+\pi^-$ spectrum
- high mass state: decays via intermediate $\Sigma_{\rm b}$ and $\Sigma_{\rm b}^{\ *}$
- low-mass state: decays Σ_b suppressed.

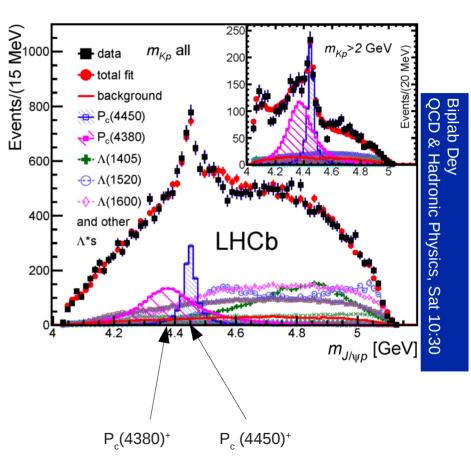
mass and mass-splitting are in very good agreement with expectation for $\Lambda_{\rm b}(1D)$ -doublet


```
\begin{split} & \mathsf{m}(\Lambda_{\rm b}(6152)) = & \mathsf{LHCb\ preliminary} \\ & 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \ \mathsf{MeV} \\ & \mathsf{M}(\Lambda_{\rm b}(6146)) = \\ & 6146.15 \pm 0.33 \pm 0.22 \pm 0.16 \ \mathsf{MeV} \\ & \mathsf{\Gamma}(\Lambda_{\rm b}\ (6152)) = 2.11 \pm 0.81 \pm 0.32 \ \mathsf{MeV} \\ & \mathsf{\Gamma}(\Lambda_{\rm b}\ (6146)) = 2.90 \pm 1.28 \pm 0.28 \ \mathsf{MeV} \end{split}
```


Check Observation of new pentaquark states


first pentaquarks observed by LHCb four years ago using $\lambda_{_{D}}$ \rightarrow J/ ψKp


 \rightarrow narrow P_c(4450)⁺, broader P_c (4380)⁺

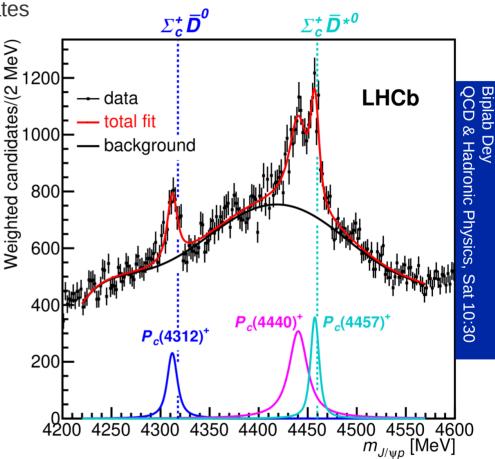


large theoretical interest in understanding the nature of the new states

tightly bound vs loosely bound molecular states

Check Observation of new pentaquark states

[Phys. Rev. Lett. 122 (2019) 222001]

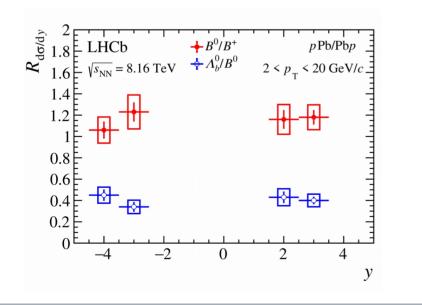

Update with full Run 2 statistics, 246'000 candidates

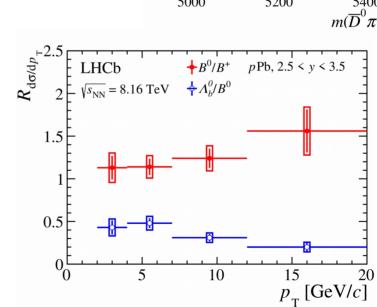
- \rightarrow new peak at P_c(4312)⁺(7.3 σ)
- → broad $P_c(4450)^+$ resolved as two narrow states (5.4 σ): $P_c(4440)^+$ and $P_c(4457)^+$

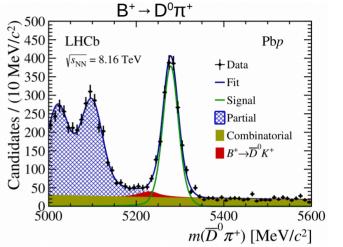
minimal quark content duucc

narrow and close to $\Sigma_{c}{}^{+}D^{0}$ and $\Sigma_{c}{}^{+}D^{*0}$ ([duc][uc]) mass thresholds

 $\rightarrow\,$ extremely important result to shed light on the nature of these exotic states


- b-hadron production in proton-lead collisions [Phys. Rev. D99 052011 (2019)]
- Charm production in fixed target collisions [PRL 122 (2019) 132002]

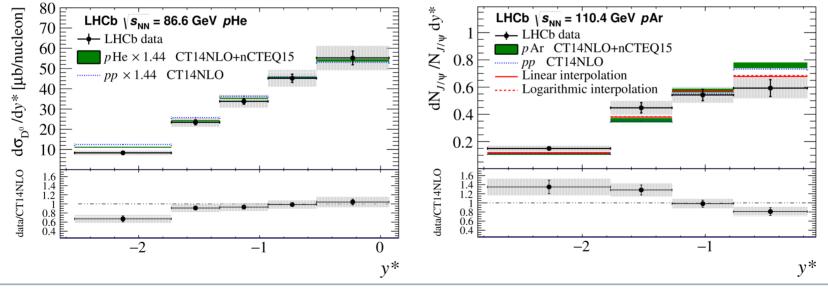

LHCD b-hadron production in proton-lead collisions


Production of B⁰, B⁺ and λ_{b} in proton-lead cm enery 8.16 TeV with exclusive decay modes

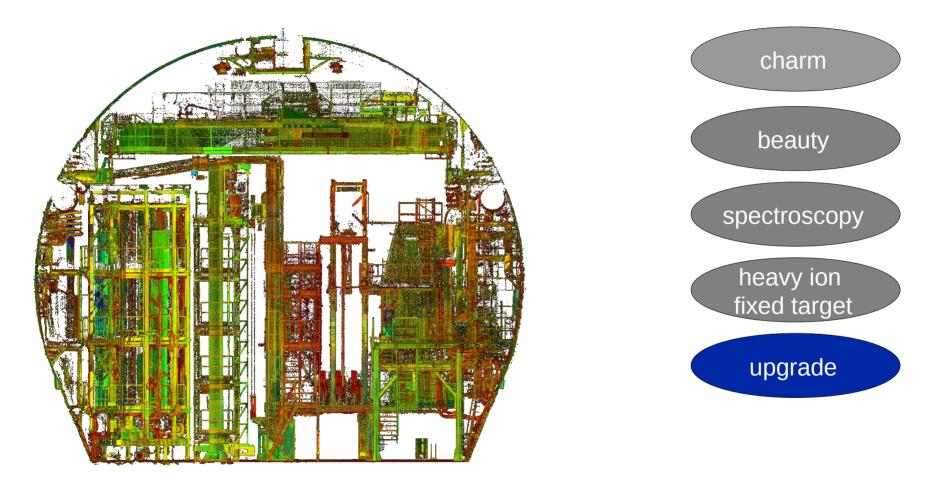
- → first measurement of beauty hadron production at p_{τ} < mass of the hadrons in the forward region
- \rightarrow input for fits of the nuclear PDFs

 \rightarrow fragmentation models in nuclear environment

[Phys. Rev. D99 052011 (2019)]

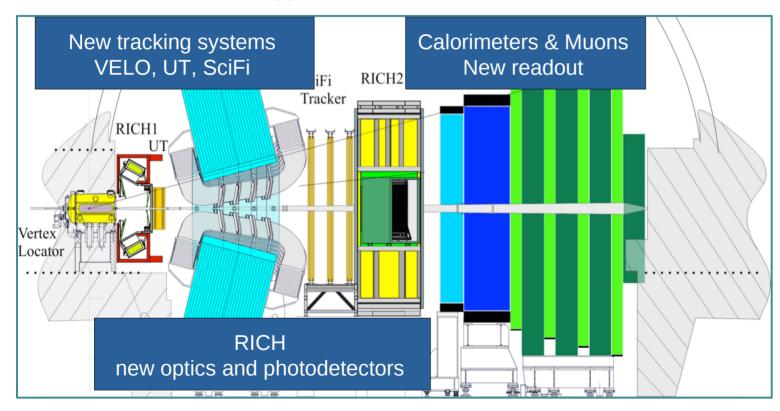

Charm production in fixed target collisions

Unique opportunity for measurements in fixed target mode


first measurement of J/ψ and D^o production in pHe @86.6 GeV pA @110.4 GeV

 \rightarrow sensitive to large Bjorken-x, up to x=0.37 for D^o

 $D^{\rm 0}$ good agreement in rapidity shapes \rightarrow no evidence for significant contribution of valence-like intrinsic charm

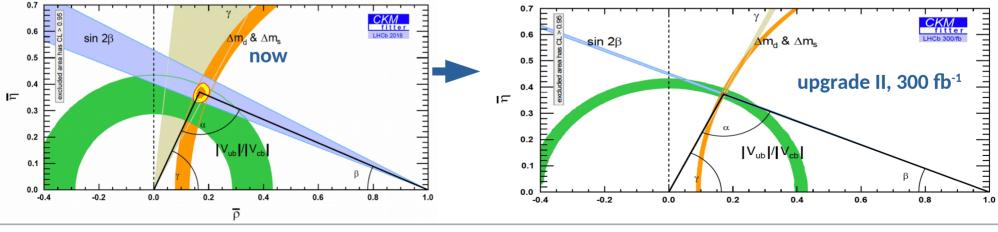


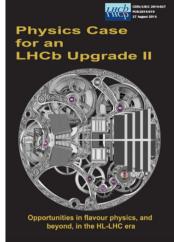
LHCb upgrade – upgrade I

Going on right now! remove the hardware trigger \rightarrow all detectors read out at 30 MHz

[CERN-LHCC 2014-001] [CERN-LHCC 2014-016] [CERN LHCC 2013-021] [CERN-LHCC 2013-022]

 \rightarrow this will be a new detector at LHCb

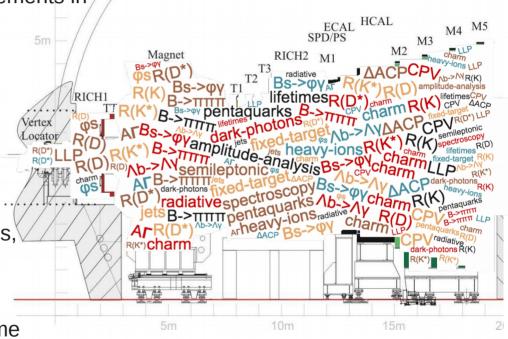



EPS 2019, July 16, 2019

And looking further – upgrade II

	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
LHC		Run 3		LS3								
HL-LHC				LS3				Run 4		LS4	Rui	n 5 🗕
Upgrade la							Upgrade Ib			Upgrade II 👄		
Bene I												

- Aim to collect > 300 fb⁻¹ at L = 2×10^{34} , x10 with respect to Upgrade I
- Consolidate in LS3, major upgrade in LS4
- Expression of Interest issued in 2017, feasibility study [CERN-ACC-NOTE-2018-0038]
- Physics case document released [CERN-LHCC-2018-027]
- Green light from LHCC to proceed to TDRs (expected ~late 2020)

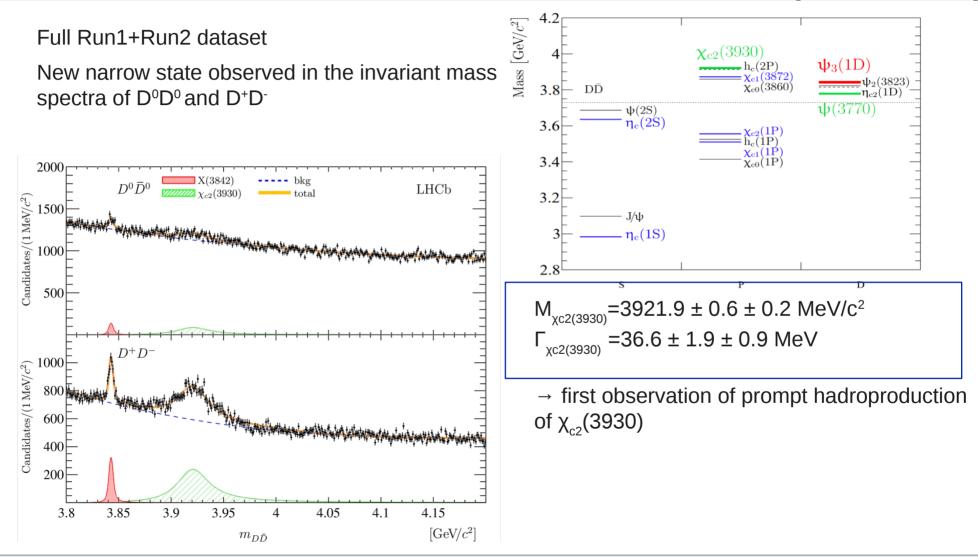


Conclusion and outlook

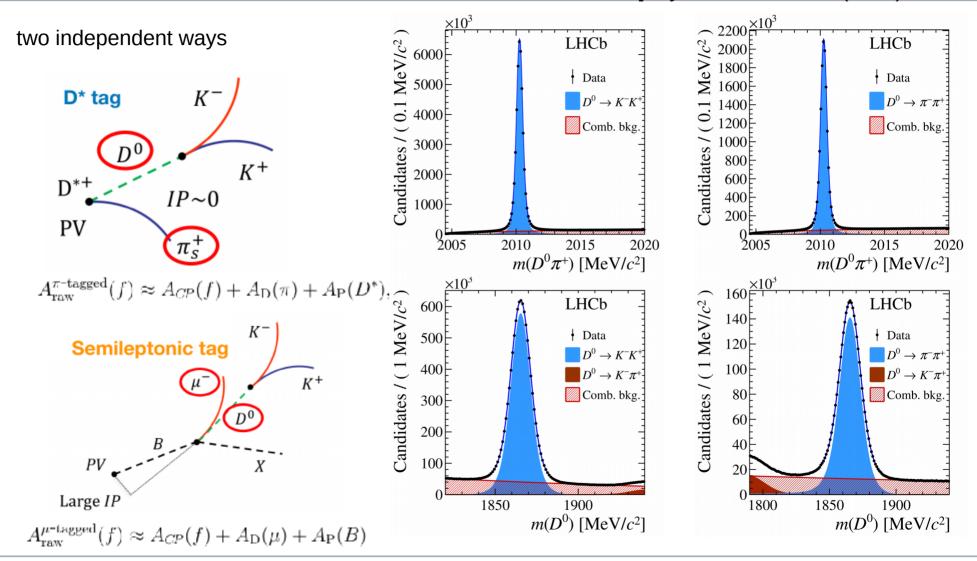
Plenty of interesting results still coming from LHCb Run1-2 LHCb upgrade opens the door to many improvements in precision, so interesting times are ahead!

LHCb has a bright future

- Tensions on lepton flavour universality will be clear in a few years
- Sensitivity to NP in many interesting channels, more will open with upgraded detector
- Precision measurements of SM parameters
- Heavy Ion and fixed target physics programme has much to add

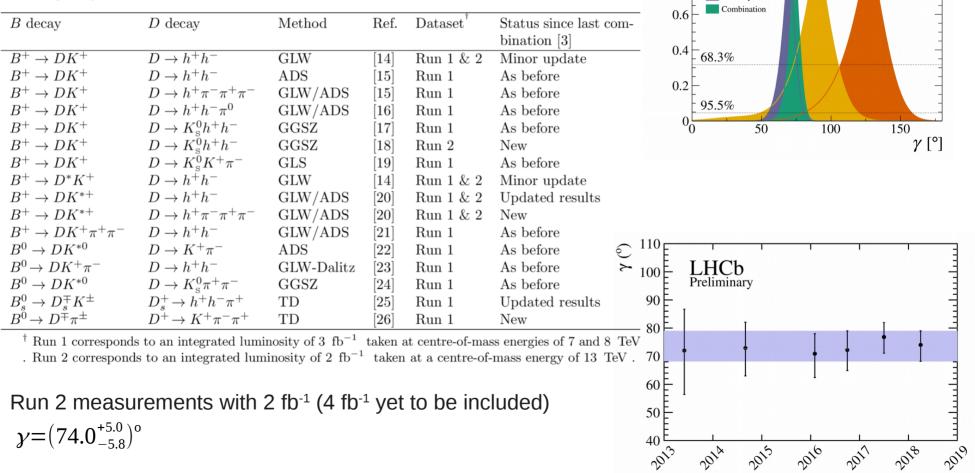


Backup


CHCP Observation of a new state in DD mass spectrum

[arXiv: 1903.12240]

Tagging flavour of charmed meson


[Phys. Rev. Lett. 122 (2019) 211803]

LHCP New combination of γ measurements

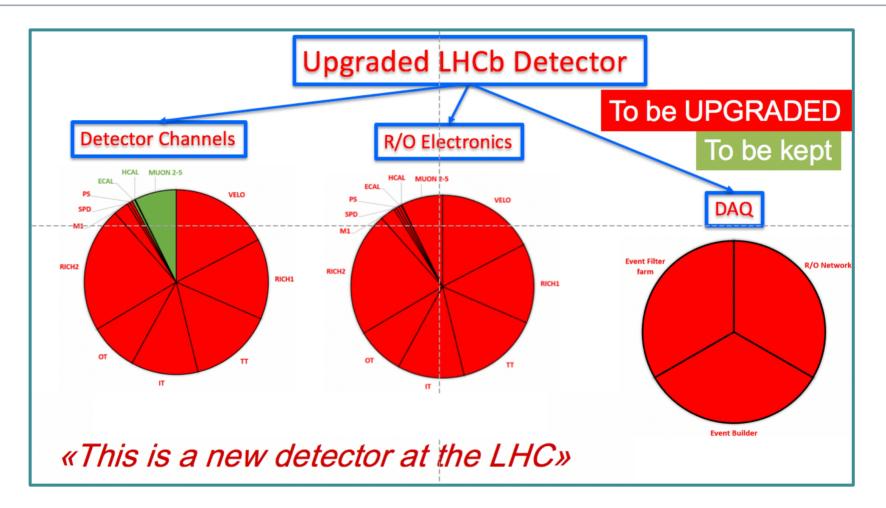
Combination of many tree level determinations

Using frquentist treatment

[LHCb-CONF-2018-002]

LHCb

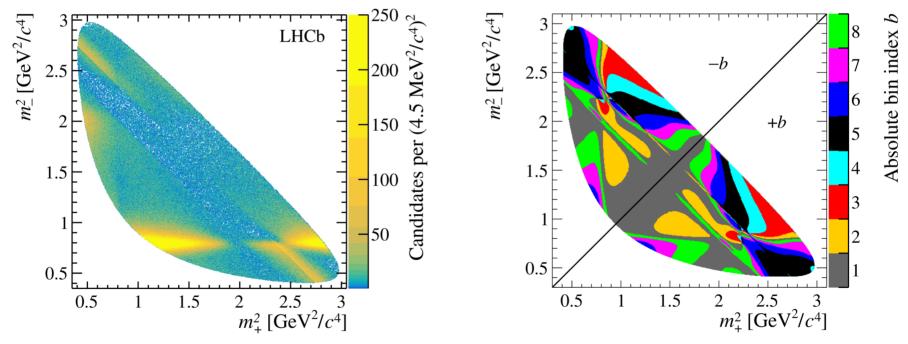
Preliminary


CL

decays

 B^0 decays

 B^+ decays

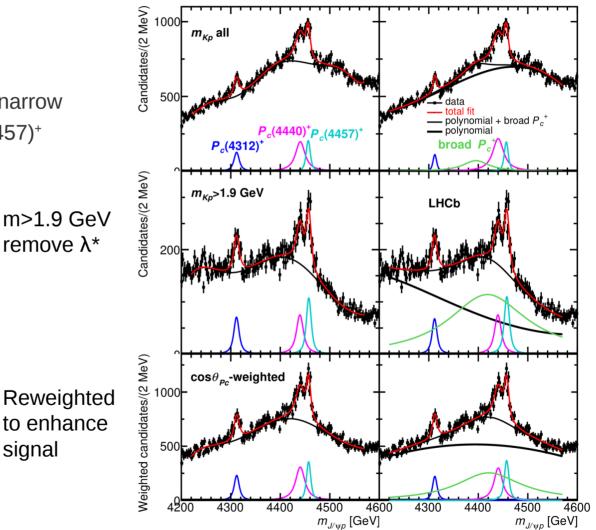


LHCD Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

[Phys. Rev. Lett 122 (2019) 231802]

Model independent approach (bin-flip method) Data is binned in Dalitz coordinates binning scheme: approximately constant strong-phase differences

measure the yield ratio R_{bi}^{\pm} between -b and b in bins of decay time

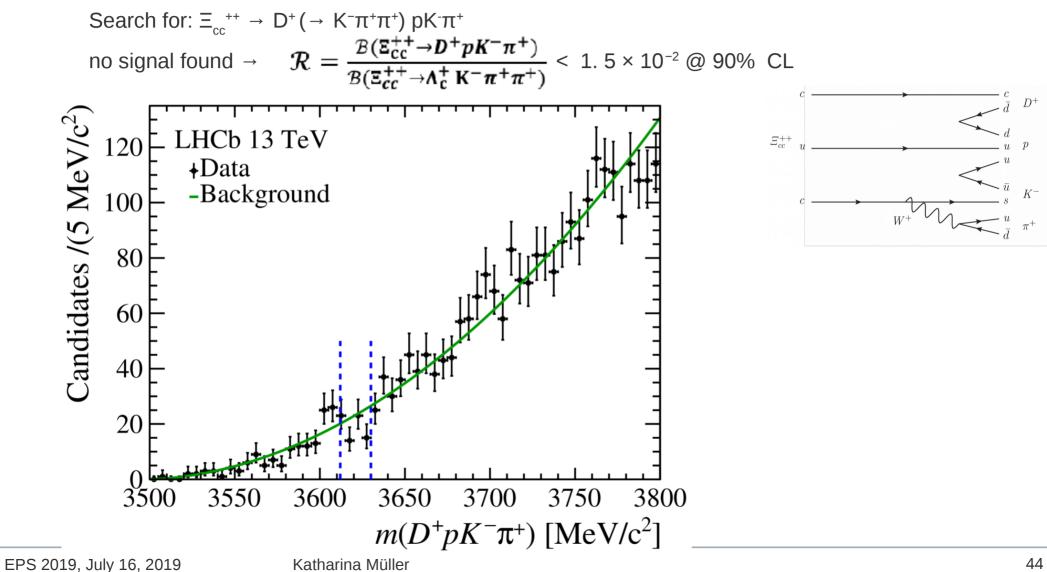

Phys. Rev. D99 (2019) 012007, arXiv:1811.010321

LHCD Observation of new pentaquark states

[Phys. Rev. Lett. 122 (2019) 222001]

246'000 candidates

- \rightarrow new peak at P_c(4312)⁺(7.3 σ)
- → broad $P_c(4450)^+$ resolved as two narrow states (5.4 σ): $P_c(4440)^+$ and $P_c(4457)^+$


LHCP LHCb – a multipurpose detector in the forward region

- Indirect searches for New Physics at the multi-TeV scale decays of beauty and charm hadron CP violation
- Understanding the details of QCD Heavy flavour production, pentaquark states, double heavy states, top physics, jets ...
- Quark gluon plasma, cold nuclear effects in heavy ion collisions Heavy flavour production in p-Pb collisions, fixed target collisions

LHCb Doubly charmed baryons

[arXiv:1905.02421]

