Flavour Physics Theory (A BSM point of view)

M. Nardecchia

INFN \& Sapienza University of Rome

16 July, EPS Conference on High Energy Physics, Ghent

Outline

- Not able to cover all the aspects. This presentation is a personal and biased (BSMhep/ph) point of view.
- In recent years (let's say from 2012) the two most import experimental sets of experimental data that are impacting the field of Flavour Physics (BSM) are
I) Higgs discovery, no evidence of New Physics in direct searches as well as in purely hadronic or purely leptonic processes

2) Slow but steady growing case for possible New Physics effects in semileptonic B-meson decays both in neutral and charged currents

- I will try to talk about theoretical implications of these two sets of measurements

The (SM) Higgs at the LHC

- Higgs looks very SM-like. Flavour highlight: Higgs direct measurement of its couplings to third generations of fermions

Yukawas at LHC		tau	b	top
ATLAS	Exp. Sig.	5.4σ	5.5σ	5.1σ
	Obs. Sig.	6.4σ	5.4σ	6.3σ
	mu	1.09 ± 0.35	1.01 ± 0.20	1.34 ± 0.21 *
CMS	Exp. Sig.	5.9σ	5.6σ	4.2σ
	Obs. Sig.	5.9σ	5.5σ	5.2σ
	mu	1.09 ± 0.27 *	1.04 ± 0.20	1.26 ± 0.26 **
			* 13 TeV only derived from cross section m ** Lower uncertainty (upper uncertainty 31)	

Testing the (SM) Flavour

- Flavour violation looks CKM-like:

$$
\mathcal{L}_{\mathrm{Yuk}}=\mathbf{y}_{\mathbf{u}} \tilde{h} q u^{c}+\mathbf{y}_{\mathbf{d}} h q d^{c}+\mathbf{y}_{\mathbf{e}} h l e^{c}+\text { h.c. }
$$

Talks by
C. Chobanova,
A. Barton

Talks by A. Rollings, Resmi P K

Direct searches

- A theoretical argument for New Physics the LHC:
[See talk by G. Panico]
- Upper bound from naturalness of the Higgs mass $\quad \Lambda<1 \mathrm{TeV}$

$$
\begin{gathered}
m_{H}^{2}=m_{\text {tree }}^{2}+\delta m_{H}^{2} \\
\delta m_{H}^{2}=\frac{3}{\sqrt{2} \pi^{2}} G_{F} m_{t}^{2} \Lambda^{2} \approx(0.3 \Lambda)^{2}
\end{gathered}
$$

Main Solutions:
I) Supersymmetry
2) Composite Higgs

Direct searches

- A theoretical argument for New Physics the LHC:
- Upper bound from naturalness of the Higgs mass $\quad \Lambda<1 \mathrm{TeV}$

$$
\begin{gathered}
m_{H}^{2}=m_{\text {tree }}^{2}+\delta m_{H}^{2} \\
\delta m_{H}^{2}=\frac{3}{\sqrt{2} \pi^{2}} G_{F} m_{t}^{2} \Lambda^{2} \approx(0.3 \Lambda)^{2}
\end{gathered}
$$

Main Solutions:
I) Supersymmetry
2) Composite Higgs

- But..

Flavour physics as NP probe

- Standard Model is very successful in describing physics up to the electroweak scale - Standard Model is not a complete theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum \frac{c_{i}^{(d)}}{\Lambda^{(d-4)}} O_{i}^{(d)}(\mathrm{SM} \text { fields }) .
$$

Flavour physics as NP probe

- Standard Model is very successful in describing physics up to the electroweak scale -Standard Model is not a complete theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum \frac{c_{i}^{(d)}}{\Lambda^{(d-4)}} O_{i}^{(d)} \text { (SM fields) } .
$$

- Strategy: measure with precision processes containing SM particles at lower energies

$$
\mathcal{A}_{i \rightarrow j}=\mathcal{A}_{i j}^{\mathrm{SM}}+\frac{c_{i j}}{\Lambda^{2}}
$$

- Very important to have Standard Model inputs and predictions under theoretical control
- We can learn about the combination $\frac{c_{i j}}{\Lambda^{2}}$

Flavour physics as NP probe

- Standard Model is very successful in describing physics up to the electroweak scale -Standard Model is not a complete theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum \frac{c_{i}^{(d)}}{\Lambda^{(d-4)}} O_{i}^{(d)} \text { (SM fields) } .
$$

- Strategy: measure with precision processes containing SM particles at lower energies

$$
\mathcal{A}_{i \rightarrow j}=\mathcal{A}_{i j}^{\mathrm{SM}}+\frac{c_{i j}}{\Lambda^{2}}
$$

- Very important to have Standard Model inputs and predictions under theoretical control
- We can learn about the combination $\frac{c_{i j}}{\Lambda^{2}}$
-Which are good observables? Any, but in particular those ones suppressed/forbidden in the SM

$$
\begin{array}{cc}
p \rightarrow \pi^{0} e^{+} & d_{i} \rightarrow d_{j} \ell^{+} \ell^{-} \\
\mathcal{A}^{\mathrm{SM}}=0 & \mathcal{A}^{\mathrm{SM}}=\frac{1}{16 \pi^{2}} V_{i k} V_{k j}^{*} f\left(\frac{m_{k}}{m_{W}}\right)
\end{array}
$$

Flavour physics as NP probe

$$
\begin{aligned}
Q_{1}^{q_{1}^{q} q_{j}} & =\bar{q}_{j L}^{\alpha} \gamma_{\mu} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} \gamma^{\mu} q_{i L}^{\beta}, \\
Q_{2}^{q_{i} q_{j}} & =\bar{q}_{i R q}^{\alpha} q_{i L}^{\alpha} \bar{q}_{\beta R}^{\beta} q_{i L}^{\beta}, \\
Q_{3}^{q_{i} q_{j}} & =\bar{q}_{i R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j R}^{\beta} q_{i L}^{\alpha}, \\
Q_{4}^{q_{4} j_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\alpha} \bar{q}_{j L}^{\beta} q_{i R}^{\beta}, \\
Q_{5}^{q_{5} q_{j}} & =\bar{q}_{j R}^{\alpha} q_{i L}^{\beta} \bar{q}_{j L}^{\beta} q_{i R}^{\alpha} .
\end{aligned}
$$

- "Large" effects still possible $\left|\frac{\mathcal{A}_{N P}}{\mathcal{A}_{S M}}\right| \lesssim 20 \%$
- To progress we need extra theoretical input

Naturalness (Pre-LHC)

- Upper bound from naturalness of the Higgs mass $\quad \Lambda \lesssim 500 \mathrm{GeV}$

$$
\begin{gathered}
m_{H}^{2}=m_{\text {tree }}^{2}+\delta m_{H}^{2} \\
\delta m_{H}^{2}=\frac{3}{\sqrt{2} \pi^{2}} G_{F} m_{t}^{2} \Lambda^{2} \approx(0.3 \Lambda)^{2} \\
\Lambda> \begin{cases}4.3 \cdot 10^{5} \mathrm{TeV} \times\left|c_{s d}\right|^{1 / 2} & \epsilon_{K} \\
4.5 \times 10^{4} \mathrm{TeV} \times\left|c_{c u}\right|^{1 / 2} & D \text { mixing } \\
3.5 \times 10^{3} \mathrm{TeV} \times\left|c_{b d}\right|^{1 / 2} & B_{d} \text { mixing } \\
7.9 \times 10^{2} \mathrm{TeV} \times\left|c_{b s}\right|^{1 / 2} & B_{s} \text { mixing }\end{cases}
\end{gathered}
$$

Naturalness (Pre-LHC)

- Upper bound from naturalness of the Higgs mass $\quad \Lambda \lesssim 500 \mathrm{GeV}$

$$
\begin{gathered}
m_{H}^{2}=m_{\text {tree }}^{2}+\delta m_{H}^{2} \\
\delta m_{H}^{2}=\frac{3}{\sqrt{2} \pi^{2}} G_{F} m_{t}^{2} \Lambda^{2} \approx(0.3 \Lambda)^{2} \\
\Lambda> \begin{cases}4.3 \cdot 10^{5} \mathrm{TeV} \times\left|c_{s d}\right|^{1 / 2} & \epsilon_{K} \\
4.5 \times 10^{4} \mathrm{TeV} \times\left|c_{c u}\right|^{1 / 2} & D \text { mixing } \\
3.5 \times 10^{3} \mathrm{TeV} \times\left|c_{b d}\right|^{1 / 2} & B_{d} \text { mixing } \\
7.9 \times 10^{2} \mathrm{TeV} \times\left|c_{b s}\right|^{1 / 2} & B_{s} \text { mixing }\end{cases}
\end{gathered}
$$

-Two (problematic) possibilities:
(i) Non canonical, $\Lambda \gg 1 \mathrm{TeV}$ and $c_{i j}=\mathcal{O}(1) \quad$ Hierarchy Problem
(ii) Canonical, $\quad \Lambda<1 \mathrm{TeV}$ and $c_{i j} \ll 1 \quad$ BSM Flavour Problem

- "Canonical" solution: spectacular New Physics in direct searches, boring flavour structure highly constrained, typically invoking Minimal Flavour Violation (MFV)

$$
\operatorname{MFV}=\left\{\begin{array}{ll}
S U(3)^{3} & \text { symmetry } \\
y_{u}, y_{d} & \text { spurions }
\end{array} \quad c_{i j}=c_{i j}\left(y_{u}, y_{d}\right) \quad \Lambda>500 \mathrm{GeV}\right.
$$

MFV-SUSY: directVS indirect

Flavour $\quad m_{\text {susy }}>500 \mathrm{GeV}$
Direct searches $m_{\text {susy }}>2000 \mathrm{GeV}$

Small (non-observable) NP effects in the flavour sector!
$\frac{c_{i j} \mathcal{O}_{i j}}{\Lambda^{2}}$ $c_{i j}=\frac{\alpha_{s}}{4 \pi}\left(y_{u} y_{u}^{\dagger}\right)_{i j}$ $\Lambda=m_{\text {susy }}$

Time to shift point of view and consider richer flavour structures (giving up (some of) the naturalness)

Two possible approaches

- Motivated structures connect FV in the SM and beyond the SM
- Partial misalignment with the SM (departure from the MFV)

Two possible approaches

- Motivated structures connect FV in the SM and beyond the SM
- Partial misalignment with the SM (departure from the MFV)

Dynamics

$|S M\rangle=\cos \epsilon|f\rangle+\sin \epsilon|\mathcal{O}\rangle \quad y_{i j}^{S M} \sim \epsilon_{i}^{L} \epsilon_{j}^{R}$
$m_{*} \gtrsim \begin{cases}15 \mathrm{TeV} & \epsilon_{K}, b \rightarrow s, \ldots \\ 40 \mathrm{TeV} & \text { nEDM }\end{cases}$

Symmetry

[Froggatt-Nielsen, see F.Tellander]

- Choose a subgroup of

$$
G_{f}=U(3)_{Q_{L}} \times U(3)_{U_{R}} \times U(3)_{D_{R}}
$$

- Choose a set of spurions and apply selection rules imposed by symmetry
- An example $U(2)^{3} \quad$ [arXivil 108.5 25]

$$
\begin{aligned}
& Y_{u}=y_{t}\left(\begin{array}{c:c}
\Delta Y_{u} & x_{t} V \\
\hdashline 0 & 1
\end{array}\right) \quad Y_{d}=y_{b}\left(\begin{array}{c:c}
\Delta Y_{d} & x_{b} V \\
\hdashline 0 & 1
\end{array}\right) \\
& \Delta Y_{u} \sim(2, \overline{2}, 1) \quad \Delta Y_{d} \sim(2,1, \overline{2}) \quad V \sim(2,1,1)
\end{aligned}
$$

- Largest effects in b physics
- In both cases lepton sector is more model dependent, we have direct access only to charged lepton Yukawa coupling. Generically we expect $\left|C_{\tau}^{N P}\right| \gg\left|C_{\mu}^{N P}\right| \gg\left|C_{e}^{N P}\right|$

Messages

- After Run I \& 2 of LHC, "Naturalness crisis" allows for richer and motivated flavour structures with associated potential signatures.
- Absence BSM effects at high pT makes flavour and intensity frontier physics extremely important.

1. Test of lepton universality using $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$decays
${ }^{20)}$ LHCb Collaboration (Roel Aaij (NIKHEE, Amsterdam) et al.). Jun 25, 2014. 10 pp. Published in Phys.Rev.Lett. 113 (2014) 151601
CERN-PH-EP-2014-140, LHCB-PAPER-2014-024
DOI: 10.1103/PhysRevLett.113.151601
e-Print: arXiv:1406.6482 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 820 records 5004
2. Observation of $J / \psi p$ Resonances Consistent with Pentaquark States in $\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ Del
${ }^{(741)}$ LHCb Collaboration (Roel Aaij (CERN) et al.). Jul 13, 2015. 15 pp.
Published in Phys.Rev.Lett. 115 (2015) 072001
CERN-PH-EP-2015-153, LHCB-PAPER-2015-029
DOI: 10.1103/PhysRevLett. 115.072001
e-Print: arXiv: 1507.03414 [hep-ex] | PDF
References | BibTeX | Larex(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Interactions.org article; Link to BBC News article; Link to Symmetry A Detailed record - Cited by 741 records 500
3. Measurement of the ratio of branching fractions $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}\right)$
${ }^{(595)}$ LHCb Collaboration (Roel Aaij (CERN) et al.). Jun 29, 2015. 10 pp.
Published in Phys.Rev.Lett. 115 (2015) no.11, 111803, Erratum: Phys.Rev.Lett. 115 (2015) no.15, 159901
CERN-PH-EP-2015-150, LHCB-PAPER-2015-025
DOI: 10.1103/PhysRevLett.115.159901, 10.1103/PhysRevLett.115.111803
e-Print: arXiv: 1506.08614 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Link to livescience article; Link to Scientific American article Detailed record - Cited by 595 records 500
4. Measurement of Form-Factor-Independent Observables in the Decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
(519) LHCb Collaboration (R Aaij (NIKHEF, Amsterdam) et al.). Aug 7, 2013. 8 pp

Published in Phys.Rev.Lett. 111 (2013) 191801
LHCB-PAPER-2013-037, CERN-PH-EP-2013-146
DOI: 10.1103/PhysRevLett.111.191801
e-Print: arXiv:1308.1707 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 519 records 5004

5. First Evidence for the Decay $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$

${ }^{(476)}$ LHCb Collaboration (R Aaij (NIKHEF, Amsterdam) et al.). Nov 2012. 9 pp.
Published in Phys.Rev.Lett. 110 (2013) no.2, 021801
CERN-PH-EP-2012-335, LHCB-PAPER-2012-043
DOI: 10.1103/PhysRevLett. 110.021801
e-Print: arXiv: 1211.2674 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 476 records
6. Angular analysis of the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$decay using $3 \mathrm{fb}^{-1}$ of integrated luminosity ${ }^{(466)}$ LHCb Collaboration (Roel Aaij (CERN) et al.). Dec 14, 2015.

Published in JHEP 1602 (2016) 104
CERN-PH-EP-2015-314, LHCB-PAPER-2015-051
DOI: 10.1007/JHEP02(016)104
DOI: 10.1007/JHEP02(2016)104
e-Print: arXiv: 1512.04442 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Link to Article from SCOAP3; Link to Figures, tables and other inform Data: INSPIRE | HepData
Detailed record - Cited by 466 records
7. Observation of the rare $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$decay from the combined analysis
${ }^{(455)}$ CMS and LHCb Collaborations (Vardan Khachatryan (Yerevan Phys. Inst.) et al.). Nov 17, 2014. 4 Published in Nature 522 (2015) 68-72
CERN-PH-EP-2014-220, CMS-BPH-13-007, LHCB-PAPER-2014-049
DOI: 10.1038/nature 14474
e-Print: arXiv: 1411.4413 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; OSTI.gov Server; Interactions.org article;
Detailed record - Cited by 455 records
8. Test of lepton universality with $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$decays
${ }^{422)}$ LHCb Collaboration (R. Aaij (CERN) et al.). May 16, 2017.
Published in JHEP 1708 (2017) 055
LHCB-PAPER-2017-013, CERN-EP-2017-100
DOI: 10.1007/JHEP08(2017)055
e-Print arXiv: 1705.05802 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Link to Article from SCOAP3; Link to Figui
Data: INSPIREI HepData
Detailed record - Cited by 422 records ㅈant
9. Measurement of the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$branching fraction and search for \boldsymbol{B}^{0}.
(396) LHCb Collaboration (R. Aaij (NIKHEF, Amsterdam) et al.). Jul 18, 2013. 9 pp.

Published in Phys.Rev.Lett. 111 (2013) 101805
CERN-PH-EP-2013-128, LHCB-PAPER-2013-046
DOI: 10.1103/PhysRevLett.111.101805
e-Print: arXiv: 1307.5024 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; Interactions.org article
Detailed record - Cited by 396 records
10. Measurement of J / ψ production in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$
${ }^{(393)}$ LHCb Collaboration (R. Aaij (NIKHEF, Amsterdam) et al.). Mar 2011. 24 pp.
Published in Eur.Phys.J. C71 (2011) 1645
LHCb-PAPER-2011-003, CERN-PH-EP-2011-018
DOI: 10.1140/epic/s10052-011-1645-y
e-Print: arXiv: 1103.0423 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
CERN Document Server;
Detailed record - Cited by 393 records
11. Evidence for CP violation in time-integrated $D^{0} \rightarrow h^{-} h^{+}$decay rates ${ }^{(361)}$ LHCb Collaboration (R. Aaij (NIKHEF, Amsterdam) et al.). Dec 2011. 8 pp . Published in Phys.Rev.Lett. 108 (2012) 111602
LHCB-PAPER-2011-023, CERN-PH-EP-2011-208
DOI: 10.1103/PhysRevLett.108.111602, 10.1103/PhysRevLett.108.129903 e-Print: arXiv: 1112.0938 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac I EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 361 records
12. Determination of the $\mathbf{X}(\mathbf{3 8 7 2})$ meson quantum numbers
${ }^{(334)}$ LHCb Collaboration (R Aaij (NIKHEF, Amsterdam) et al.). Feb 25, 2013. 8 pp . Published in Phys.Rev.Lett. 110 (2013) 222001
LHCB-PAPER-2013-001, CERN-PH-EP-2013-017
DOI: 10.1103/PhysRevLLett.110.222001
e-Print: arXiv: 1302.6269 [hep-ex] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service; OSTI.gov Server
Detailed record - Cited by 334 records

Lepton Flavour Universality in the SM

- Leptons appear in the Standard Model in the gauge and Yukawa sector:

- Yukawa sector breaks the universality in two ways $\quad \mathcal{L}_{\mathrm{SM}} \supset Y_{i j}^{E} \bar{L}_{L}^{i} E_{R}^{j} H+$ h.c

1) In the mass terms $m_{e} \neq m_{\mu} \neq m_{\tau}$
2) Higgs interactions (negligible)

- The Standard Model is Lepton Flavour Non Universal (LFNU)
- Testing the LFU in the Standard Model means testing the universality of the gauge interaction

LFU in $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$

$$
R_{K}=\frac{\int_{1.1 \mathrm{GeV}^{2}}^{6.6 \mathrm{GeV}^{2}} \frac{\mathrm{~d} \mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{1.1 \mathrm{GeV}^{2}}^{6.0 \mathrm{GeV}^{2}} \frac{\mathrm{~d} \mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}
$$

Measurement performed in $1.1<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}$ on

- Reanalysed 2011 \& 2012 data ($3 \mathrm{fb}^{-1}$),
\rightarrow Improved reconstruction and re-optimised analysis strategy
- Added 2015 and 2016 datasets ($\sim 2 \mathrm{fb}^{-1}$),
\rightarrow Larger $b \bar{b}$ cross-section due to higher \sqrt{s}
In total, this update uses \sim twice as many B 's as previous analysis.
- R_{K} is extracted through simultaneous fit to 8 datasets: muons/electrons (3 trigger categories) Run1/Run2

$$
\boldsymbol{R}_{K}=0.846_{-0.054}^{+0.060}{ }_{-0.014}^{+0.016} \text { (stat., syst.) }
$$

- Consistent with the SM at 2.5 standard deviations
- Dominated by statistics of the rare electron mode
- Dominant systematics: corrections to the simulation (trigger), fit model
- Updated measurement of dielectron differential branching fraction

$$
\frac{d \mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{d q^{2}}\left(1.1<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}\right)=\left(28.6_{-1.7}^{+2.0} \pm 1.4\right) \times 10^{-9} c^{4} / \mathrm{GeV}^{2}
$$

- Consistent with the SM predictions

Flavour Anomalies

$b \rightarrow s \mu \mu$
(LHCb from 2013)
I) Angular observables in $B \rightarrow K^{*} \mu^{+} \mu^{-} \sim 4 \sigma(?!)$ 2) Branching ratios $\gtrsim 3.5 \sigma(?!) \quad$ [Various talks@EPS] 3) LFU violation in $R_{K} \quad 2.6 \sigma$
4) LFU violation in $R_{K^{*}}$ (2 bins) $2.3 \sigma, 2.6 \sigma$

$$
\text { "clean" only } \approx 4 \sigma
$$

[Talk by
D. Kumar]

$$
\alpha_{e f f}=\frac{1}{\Lambda_{R_{k}}^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L}+h \cdot c \text {. }
$$

$\left|C_{\mu}^{\mathrm{NP}}\right| \gg\left|C_{e}^{\mathrm{NP}}\right|$

$$
\Lambda_{R_{K}}=37 \mathrm{TeV}
$$

$b \rightarrow c \tau \nu$
Babar+Belle+LHCb from 2012

SM

[Talk by
A. Penuelas]

$$
\alpha_{e f f}=-\frac{2}{\Lambda_{R_{D}}^{2}} \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+h . c \text {. }
$$

$\left|C_{\tau}^{\mathrm{NP}}\right| \gg\left|C_{\mu}^{\mathrm{NP}}\right|,\left|C_{e}^{\mathrm{NP}}\right|$
$\Lambda_{R_{D}}=3.7 \mathrm{TeV}$

Bottom-up path

Theoretical input / bias

EFT considerations

- Fits to data suggest a sizeable (most likely dominant) contribution of the New Physics to left currents for both quarks and leptons

$$
C_{S}\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)+C_{T}\left(\bar{Q}_{L}^{i} \gamma^{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)
$$

$S U(2)$ structure induce correlations

- Considering the whole set of data (neutral and charged currents), a possible link with the SM flavour structure is emerging
$b \rightarrow c \tau \nu \quad 3_{q} \rightarrow 2_{q} 3_{\ell} 3_{\ell}$ SMVS NP $\left|C_{\tau}^{\mathrm{NP}}\right| \gg\left|C_{\mu}^{\mathrm{NP}}\right| \gg\left|C_{e}^{\mathrm{NP}}\right|$ $b \rightarrow s \mu \mu \quad 3_{q} \rightarrow 2_{q} 2_{\ell} 2_{\ell}$
A link? $\quad\left|Y_{\tau}^{S M}\right| \gg\left|Y_{\mu}^{S M}\right| \gg\left|Y_{e}^{S M}\right|$
- Motivated flavour ansatz in the quark sector ($\mathrm{U}(2)$,Partial Compositeness...) predicts dominant coupling of the New Physics with the third family (with suppressed transitions between the first two).
- A good starting point even if flavor anomalies will disappear

Simplified models

Simplified Model	Spin	SM irrep	c_{1} / c_{3}	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_{i} \rightarrow d_{j} \nu \bar{\nu}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark	\times
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark	\times
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark	\times
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark	\times

- Remarkably there is a unique solution, if we consider a single mediator

A clear winner! $\quad U_{\mu}=(3,1,2 / 3)$

[Buttazzo, Greljo, Isidori Marzocca 1706.07808]

Simplified models

Simplified Model	Spin	SM irrep	c_{1} / c_{3}	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_{i} \rightarrow d_{j} \nu \bar{\nu}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark	\times
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark	\times
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark	\times
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark	\times

- Remarkably there is a unique solution, if we consider a single mediator

$$
\text { A clear winner! } \quad U_{\mu}=(3,1,2 / 3)
$$

- A spin I state calls for a UV completion. This is not an academic question, collider searches and indirect probes are dominated by the
 phenomenology of the extra states that emerge with the leptoquark.

Phenomenological constraints

I) Direct searches.

$$
\begin{gathered}
\alpha_{f f}=-\frac{2}{\Lambda_{R_{D}}} \bar{c}_{L}{ }^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+h . c . \rightarrow\left(\frac{1}{1 \mathrm{TeV}}\right)^{2} \bar{b}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma^{\mu} \tau_{L} \\
\Lambda_{R_{D}}=3.4 \mathrm{TeV}
\end{gathered}
$$

[Faroughy,Greljo,Kamenik, 1609.07138]

[Feruglio, Paradisi, Pattori,
1606.00524, I705.00929]
3) Flavour observables, for example FCNC with neutrinos, Bs mixing

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right) \approx \mathcal{B}\left(B \rightarrow K^{(*)} \nu_{\tau} \nu_{\tau}\right) & \gg \mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)_{S M} \\
\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)_{S M}} & \lesssim 4
\end{aligned}
$$

The 432I model

- We need two ingredients: an enlarged gauge structure and extra matter fields

\[

\]

- Extra gauge bosons don't decouple, for example in some limit:
- Field content

$$
3 M_{U}^{2}=M_{g^{\prime}}^{2}+2 M_{Z^{\prime}}^{2}
$$

\(\left.\left.$$
\begin{array}{|c|c|c|c|c|}\hline \text { Field } & S U(4) & S U(3)^{\prime} & S U(2)_{L} & U(1)^{\prime} \\
\hline q_{L}^{\prime i} & 1 & 3 & 2 & 1 / 6 \\
u_{R}^{i} & 1 & 3 & 1 & 2 / 3 \\
d_{R}^{\prime i} & 1 & 3 & 1 & -1 / 3 \\
\ell_{L}^{\prime i} & 1 & 1 & 2 & -1 / 2 \\
e_{R}^{\prime i} & 1 & 1 & 1 & -1 \\
\Psi_{L}^{i} & 4 & 1 & 2 & 0 \\
\Psi_{R}^{i} & 4 & 1 & 2 & 0 \\
\hline H & 1 & 1 & 2 & 1 / 2 \\
\Omega_{3} & \overline{4} & 3 & 1 & 1 / 6 \\
\Omega_{1} & 4 & 1 & 1 & -1 / 2 \\
\hline\end{array}
$$\right\} \begin{array}{l}

vector-like states

(Q+L)

\end{array}\right\}\)| would-be SM states |
| :--- |

- Baryon and Lepton numbers are global accidental symmetries

Models for NC anomalies $b \rightarrow s \mu \mu$

[See talk
by I. Dorsner]
$\frac{\Delta_{b s} \Delta_{\mu \mu}}{m_{Z^{\prime}}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}$
$\frac{\lambda_{b \mu} \lambda_{s \mu}}{m_{\Pi}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}$

$\frac{y^{4}}{16 \pi^{2}} \frac{1}{m_{N P}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}$
[See talk by P.Arnan]

- Implications for low-energy measurements
[See also talk
If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables
E.g.: correlations among down-type FCNCs [using the results of U(2)-based EFT]:

	$\mu \mu$ (ee)	$\tau \tau$	VV	$\tau \mu$	$\mu \mathrm{e}$
$\mathrm{b} \rightarrow \mathrm{s}$		$\begin{array}{r} \mathrm{B} \rightarrow \mathrm{~K}^{(*)} \tau \tau \\ \rightarrow 100 \times \mathrm{SM} \end{array}$	$\mathrm{B} \rightarrow \mathrm{~K}^{(*)} v v$ O (1)	$\begin{gathered} \mathrm{B} \rightarrow \mathrm{~K} \tau \mu \\ \rightarrow \sim 10^{-6} \end{gathered}$	$\mathrm{B} \rightarrow \mathrm{K} \mu \mathrm{e}$???
$\mathrm{b} \rightarrow \mathrm{d}$	$\begin{aligned} & \mathrm{B}_{\mathrm{d}} \rightarrow \mu \mu \\ & \mathrm{~B} \rightarrow \pi \mu \mu \\ & \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{~K}^{(*)} \mu \mu \\ & \mathrm{O}(20 \%)\left[\mathrm{R}_{\mathrm{K}}=\mathrm{R}_{\pi}\right. \end{aligned}$	$\begin{aligned} & \mathrm{B} \rightarrow \pi \tau \tau \\ & \rightarrow 100 \times \mathrm{SM} \end{aligned}$	$\begin{gathered} \mathrm{B} \rightarrow \pi v \nu \\ \mathrm{O}(1) \end{gathered}$	$\begin{gathered} \mathrm{B} \rightarrow \pi \tau \mu \\ \rightarrow \sim 10^{-7} \end{gathered}$	$\mathrm{B} \rightarrow \pi \mu \mathrm{e}$???
$\mathrm{s} \rightarrow \mathrm{d}$	long-distance pollution	$N A$	$\mathrm{K} \rightarrow \pi v v$ $\mathrm{O}(1)$	$N A$	$\mathrm{K} \rightarrow \mu \mathrm{e}$???

Prospects

	Run I $(20\|0-20\| 2)$	Run 2 $(20\|5-20\| 8)$	Run 3 $(202 \mid-2023)$	Run 4 $(2026-2029)$						
			'Milestone I'	'Milestone II'	'Milestone III'	year		2012	2020	2024
:---	:---:	:---:	:---:	:---:						

-The fate of the anomalies

Measurement	SM prediction (Ref. [43])	Current World Average (Ref. [35])	Current Uncertainty (Ref. [35])	Projected Uncertainty				
				Belle II			LHCb	
				$5 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	fb^{-1}	$22 \mathrm{fb}^{-1}$	fb^{-}
$R(D)$	(0.299 $\pm 0.003)$	$(0.403 \pm 0.040 \pm 0.024)$	11.6\%	5.6%	3.2%	-	-	-
$R\left(D^{*}\right)$	(0.257 ± 0.003)	$(0.310 \pm 0.015 \pm 0.008)$	5.5\%	3.2%	2.2\%	3.6%	2.1\%	1.6\%

[Albrecht, Bernlochner, Kenzie, Reichert, Straub, Tully, arXiV:I709.I0308]
tematic uncertainties can be neglected. If the anomalies in $R(K)$ and $R\left(K^{*}\right)$ persist at the current central values, LHCb will measure $R(K)$ with a significance of $>5 \sigma$ with respect to the SM prediction at milestone I, increasing to 15σ with the milestone III dataset. Concerning $R\left(K^{*}\right)$ at low q^{2}, the tension would increase to $3.4-3.8 \sigma(6.2-6.9 \sigma)$, depending on the SM prediction, at milestone I (II); a tension of around 10σ would be reached by milestone III. For $R\left(K^{*}\right)$ at high

Prospects

Conclusions

- Flavour physics is and it will remain strategically important for the HEP community:
- if flavour anomalies will be confirmed, the interest towards the physics results of LHCb, Bellell (and other experiments!) cannot be underestimated.
- If flavour anomalies will disappear and no evidence of NP on-shell at LHC, flavour physics will remain a unique probe to test higher energy scales in a indirect way
- Theoretical guidelines based on the naturalness of the EW scale are not providing the expected answers, this make us rethinking about various aspects including the flavor problem
- Flavour anomalies are surviving in a coherent way in both charged current (2012) and neutral current (2013).
- Current anomalies in B decays have a simple and consistent interpretation at the effective field theory level (model independent). There are hints of dominant couplings of the NP with the third family of SM fermions
- The NP scale inferred from the charged current anomalies is within the reach of present or near future colliders. Explicit constructions provide correlations with other observables. Fair to say that models are subject to a series of stringent constraints.
- We are really looking forward for new data!

BACKUP

New Physics (Model Independent)

- Model independent analysis via a low-energy effective hamiltonian, assuming short-distance New Physics in the following operators

$$
\begin{array}{ll}
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}}\left(V_{t s}^{*} V_{t b}\right) & \sum_{i} C_{i}^{\ell}(\mu) \mathcal{O}_{i}^{\ell}(\mu) \\
\mathcal{O}_{7}^{\left({ }^{\prime}\right)}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\alpha \beta} P_{R(L)} b\right) F^{\alpha \beta}, & C_{7}^{S M}=-0.319, \\
\mathcal{O}_{9}^{\ell\left(\left(^{\prime}\right)\right.}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\alpha} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\alpha} \ell\right), & C_{9}^{S M}=4.23, \\
\mathcal{O}_{10}^{\ell\left(\left(^{\prime}\right)\right.}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma_{\alpha} P_{L(R)} b\right)\left(\bar{\ell} \gamma^{\alpha} \gamma_{5} \ell\right) . & C_{10}^{S M}=-4.41
\end{array}
$$

SM gives lepton flavour universal contribution

- Preference for lepton vector current $\quad C_{9}^{\mu, N P} \approx-1$
- Short distance effects from New Physics are expected to have a chiral structure

$$
\begin{gathered}
\bar{\ell} \gamma^{\alpha} \ell \\
\bar{\ell} \gamma^{\alpha} \gamma_{5} \ell
\end{gathered} \longrightarrow \begin{aligned}
& \bar{\ell}_{L} \gamma^{\alpha} \ell_{L} \\
& \bar{\ell}_{R} \gamma^{\alpha} \ell_{R}
\end{aligned}
$$

Best Fit with Left-Left currents

$$
C_{9}^{\mu, N P}=-C_{10}^{\mu, N P}
$$

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.95	$[-1.10,-0.79]$	$[-1.26,-0.63]$	5.8σ
$C_{9}^{\prime b s \mu \mu}$	+0.09	$[-0.07,+0.24]$	$[-0.23,+0.39]$	0.5σ
$C_{10}^{b s \mu \mu}$	+0.73	$[+0.59,+0.87]$	$[+0.46,+1.01]$	5.6σ
$C_{10}^{\prime b s \mu \mu}$	-0.19	$[-0.30,-0.07]$	$[-0.41,+0.04]$	1.6σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.05,+0.35]$	$[-0.09,+0.51]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.62,-0.45]$	$[-0.70,-0.36]$	6.5σ
$C_{9}^{b s e e}$	+0.88	$[+0.62,+1.15]$	$[+0.36,+1.44]$	3.4σ
$C_{9}^{\prime b s e e}$	+0.32	$[+0.09,+0.61]$	$[-0.16,+0.91]$	1.3σ
$C_{10}^{b s e e}$	-0.82	$[-1.06,-0.59]$	$[-1.31,-0.37]$	3.7σ
$C_{10}^{\text {bsee }}$	-0.27	$[-0.52,-0.05]$	$[-0.78,+0.17]$	1.2σ
$C_{9}^{b s e e}=C_{10}^{b s e e}$	-1.65	$[-1.93,-1.36]$	$[-2.19,-1.02]$	4.0σ
$C_{9}^{b s e e}=-C_{10}^{b s e e}$	+0.45	$[+0.31,+0.59]$	$[+0.19,+0.74]$	3.6σ
$\left(C_{S}^{b s \mu \mu}=-C_{P}^{b s \mu \mu}\right) \times \mathrm{GeV}$	-0.005	$[-0.008,-0.003]$	$[-0.013,-0.001]$	2.6σ
$\left(C_{S}^{b s \mu \mu}=C_{P}^{b s \mu \mu}\right) \times \mathrm{GeV}$	-0.005	$[-0.008,-0.003]$	$[-0.013,-0.001]$	2.6σ

Angular distributions
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \ell^{+} \ell^{-}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right)$full angular distribution described by four kinematic variables: q^{2} (dilepton invariant mass squared), $\theta_{\ell}, \theta_{K^{*}, \phi}$

$$
\frac{d^{4} \Gamma\left[B \rightarrow K^{*}(\rightarrow K \pi) \ell \ell\right]}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K^{*}} d \phi}
$$

3.7σ discrepancy in one of q^{2} bins

Explanations:

I. Statistical fluctuation?
2. Hadronic uncertainties
3. New Physics
2. From Ciuchini, et al., JHEP, I 5 I 2.07 I 57
"No deviation is present once all the theoretical uncertainties are take into account"

LHCb, I308.I707, PRL

Moriond EW 2015

Moriond EW 2017

Branching ratios

Various measurements of branching ratios are low compared to the SM prediction

Decay	obs.	q^{2} bin	SM pred.	measurement		pull
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[2,4.3]$	0.81 ± 0.02	0.26 ± 0.19	ATLAS	+2.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[4,6]$	0.74 ± 0.04	0.61 ± 0.06	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	S_{5}	$[4,6]$	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	P_{5}^{\prime}	$[1.1,6]$	-0.44 ± 0.08	-0.05 ± 0.11	LHCb	-2.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	P_{5}^{\prime}	$[4,6]$	-0.77 ± 0.06	-0.30 ± 0.16	LHCb	-2.8
$B^{-} \rightarrow K^{*-} \mu^{+} \mu^{-}$	$10^{7} \frac{d \mathrm{BR}}{d q^{2}}$	$[4,6]$	0.54 ± 0.08	0.26 ± 0.10	LHCb	+2.1
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{d \mathrm{BR}}{d q^{2}}$	$[0.1,2]$	2.71 ± 0.50	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{d \mathrm{BR}}{d q^{2}}$	$[16,23]$	0.93 ± 0.12	0.37 ± 0.22	CDF	+2.2
$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$	$10^{7} \frac{d \mathrm{BR}}{d q^{2}}$	$[1,6]$	0.48 ± 0.06	0.23 ± 0.05	LHCb	+3.1
$[\mathrm{Lupdated}, \mathrm{LHCB} \mid 506.08777]$	0.26 ± 0.04		+3.5			

I. Statistical fluctuation (now in different channels)
2. Hadronic uncertainties
3. New Physics

(Theoretical uncertainties)

(B)

I. Form factors, however at low $q^{\wedge} 2$ can use Light-Cone Sum Rules (LCSR) and at high $q^{\wedge} 2$ lattice result

$$
\langle M(\lambda)| \bar{s} \epsilon^{*}(\lambda) P_{L(R)} b|\bar{B}\rangle
$$

2. Contributions from hadronic weak hamiltonian (non local effects)

$$
-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \mathrm{lept}}(x)|0\rangle \int d^{4} y e^{i q \cdot y}\langle M| j^{\mathrm{em}, \mathrm{had}, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)|\bar{B}\rangle
$$

Main effect is encoded in $h_{\lambda}\left(q^{2}\right)=\frac{\epsilon_{\mu}^{*}(\lambda)}{m_{B}^{2}} \int d^{4} x e^{i q x}\left\langle\bar{K}^{*}\right| T\left\{j_{\mathrm{em}}^{\mu}(x) \mathcal{H}_{\mathrm{eff}}^{\text {had }}(0)\right\}|\bar{B}\rangle$

$$
=h_{\lambda}^{(0)}+\frac{q^{2}}{1 \mathrm{GeV}^{2}} h_{\lambda}^{(1)}+\frac{q^{4}}{1 \mathrm{GeV}^{4}} h_{\lambda}^{(2)},
$$

B $\rightarrow \mu^{+} \mu^{-}$: Combination from LHC

- Combination of ATLAS, CMS \& LHCb

Combining all three LHC experiments

$$
B R\left(B_{S} \rightarrow \mu^{+} \mu^{-}\right)=(2.71 \pm 0.4) \times 10^{-9}
$$

ATLAS: JHEP 04 (2019) 098
CMS: PRL111(2013)101804
LHCb: PRL118(2017)191801

SM: Buras, Isidori et al EPJC72(2012) 2172 $\operatorname{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)=3.5 \pm 0.3 \times 10^{-9}$
\rightarrow agrees within 2σ

The low $q^{\wedge} 2$ bin

- At low q^2, Standard Model contribution is dominate by dipole operator (due the photon pole)
- NP effects are reduced in this bin

- Can be a sanity check of the measurement
- Having a large effect here requires light long range New Physics

MSSM

- LFU in the MSSM without R-Parity Violation: loop level

- Lepton universality is broken by slepton masses $m_{\tilde{e}} \gg m_{\tilde{\mu}}$
- Box diagrams are numerically small, very light particles in the loop
- No free parameter on the Feynman vertices: EW couplings
- Direct searches (LHC+LEP) give strong constraints, (probably) no hope left (but a careful analysis is required)
- MSSM wit R-Parity Violation: basically SM + some specific leptoquark + ...
- An attempt to address charged current anomalies with RPV, Altmannshofer,Dev, Soni I704.06659 however have to tune neutrino masses...

The LHCb results with large effect in muons suggest an extensions of the MSSM

- What is the scale of New Physics?
Model dependent part

$$
\begin{aligned}
& \Lambda_{R_{D^{(*)}}}=3.4 \pm 0.4 \mathrm{TeV}, \\
& \Lambda_{R_{K^{(*)}}}=31 \pm 4 \mathrm{TeV},
\end{aligned} \begin{gathered}
\text { "Measured" } \\
\text { Fermi constant }
\end{gathered} \quad \frac{1}{\Lambda^{2}}=\frac{C}{M^{2}} \quad \mathrm{C}=\text { (loops) } \times \text { (couplings) } \times \text { (flavour) }
$$

[Di Luzio, MN, I706.0I868]

$$
\begin{aligned}
& \mathcal{A}(\psi \psi \rightarrow \psi \psi) \propto s \\
& \text { Tree-Level Pertubative } \\
& \text { Unitarity criterium }
\end{aligned} \quad \begin{cases}\sqrt{s}_{\max } \equiv \Lambda_{U}=9 \mathrm{TeV} & b \rightarrow c \tau \nu \\
\sqrt{s}_{\max } \equiv \Lambda_{U}=80 \mathrm{TeV} & b \rightarrow s \mu \mu\end{cases}
$$

$$
\left|\mathcal{A}_{J=0}\right|<1 / 2
$$

An old lesson:VV scattering...

$$
\Lambda_{U}=2 \mathrm{TeV}, m_{h}=125 \mathrm{GeV}
$$

- What do we expect? (Warning: a simplified cartoon!)

$$
b \rightarrow c \tau \nu
$$

$$
b \rightarrow s \mu \mu
$$

SM-EFT regime: tails

- If the New Physics is very heavy the strategy is to look for di-lepton pair at high-pT

$$
\begin{gathered}
\mathcal{L}^{\text {SMEFT }} \supset \frac{C}{M^{2}} \overline{\bar{Q}} \gamma^{\mu} Q \bar{L}_{\gamma_{\mu}} L \\
\mathcal{A} \propto \frac{E^{2}}{M^{2}} \quad \text { valid when } E \lesssim M
\end{gathered}
$$

- NC anomalies [1704.09015,18051। 402$]$

$$
p p \rightarrow \mu^{+} \mu^{-}
$$

No sensitivity at HL-LHC if it is present ONLY

$$
\frac{1}{(30 \mathrm{TeV})^{2}}(\bar{b} \Gamma s)(\bar{\mu} \Gamma \mu)
$$

$p p \rightarrow \tau \nu$

[Greljo, Martin Camalich, Ruiz-Alvarez 1811.07920]

Phys.Rev.Lett. 122 (2019)

- Making use of the ATLAS and CMS mono-tau serches

Leptoquarks

- Working assumption: decays into third family. Relevant parameters: LQ coupling and mass:

Vector LQ model for B-anomalies

- HL-LHC and HE-LHC report [18|2.07638]
- Two decay channels: bottom-tau, top-neutrino. $\operatorname{SU}(2)$ fix the $B R$ to be equal
- Top-neutrino: see N.Vignaroli I808.I0309
- Message: LQ survives at the LHC and HL-LHC in large part of the parameter space...

