

CU group's work supported by U.S. Department of Energy Office of Science

EPS-HEP 17 July 2019 Ghent, Belgium

How does the behavior of Quark-Gluon Plasma emerge from the microscopic QCD theory?

jets: multi-scale, internally generated probes of the QGP medium...

Precision tools, near-ubiquitous in modern HEP...

Years of work by many across HI community to make / improve reconstructed jet measurements!

Nuclear modification factor (Pb+Pb/pp ratio) for inclusive jets

Nuclear modification factor (Pb+Pb/pp ratio) for inclusive jets

1. Significant improvements in systematic control over jet energy scale

Nuclear modification factor (Pb+Pb/pp ratio) for inclusive jets

- 1. Significant improvements in systematic control over jet energy scale
- 2. Extension of kinematic reach + more 1
 differential measurements
 (2018 data 3.5x luminosity for ATLAS+CMS)

- 3. Advanced techniques to separate lower-p_T jets from the HI background
- 1. Significant improvements in systematic control over jet energy scale
- 2. Extension of kinematic reach + more / differential measurements (2018 data 3.5x luminosity for ATLAS+CMS)

(longitudinal momentum) fragmentation function

jet mass

splitting function

Jet (sub)structure in Heavy Ions growing topic with lots to learn from HEP community

(longitudinal momentum) fragmentation function

how is development of parton shower modified? structure of in-cone radiated energy / thermal QGP "response"?

Fragmentation functions

Phys. Rev. C 90 (2014) 024908

- increase in soft particles
- "softening" in moderate-p⊤ region
- † survivor bias? (also note p⊤ sum rule)

Fragmentation functions

increase in soft particles

Ratios at small p_T^h similar at all p_T^{jet} ...

must be related to absolute <u>QGP</u>

scales (soft thermal response)

(longitudinal momentum) fragmentation function

how is development of parton shower modified? structure of in-cone radiated energy / thermal QGP "response"?

jet mass

does QGP filter out soft modes, leaving hard core (decrease mass)? soft particle response to deposited energy (increase mass)?

Jet mass

PLB 776 (2018) 249

ungroomed mass in priet selections

selected/surviving jets have smaller mass...

(longitudinal momentum) fragmentation function

how is development of parton shower modified? structure of in-cone radiated energy / thermal QGP "response"?

jet mass

does QGP filter out soft modes, leaving hard core (decrease mass)? soft particle response to deposited energy (increase mass)?

splitting function

do nearby subjets lose energy the same way (stochasticity of E-loss)? can the medium resolve independent subjets (color coherence)?

Splitting function

Run: 286834

Event: 124877733

2015-11-28 01:15:42 CEST

Pb+Pb $\sqrt{s_{NN}}$ = 5.02 TeV

photon + multijet event

 $\Sigma E_T^{FCal} = 4.06 \text{ TeV}$

EW boson-tagged jet quenching

p_T = 200 GeV photon

balancing jet(s)?

What is the (absolute) amount of energy lost in cone?

How is the parton shower in cone modified by medium?

Where does the lost energy end up (angular and momentum modes)?

Photon+jet p_T balance

$$X_{x} = p_{x}^{jet} / p_{x}^{y}$$

 $P(p\tau^{jet} \sim p\tau^{\gamma}) = large$

in **50-80%** Pb+Pb events, sharp peak at $x_{N} \sim 1$, as in **pp**

ATLAS

pp 5.02 TeV, 25 pb⁻¹ Pb+Pb 5.02 TeV, 0.49 nb⁻¹

$$p_{\rm T}^{\gamma} = 100-158 \; {\rm GeV}$$

- pp (same each panel)
- Pb+Pb

in **0-10%** Pb+Pb events, distribution of outcomes!

Photon-tagged jet structure

ratio of (radial) jet shape for photon-tagged jets

compare photon-tagged (quark) and inclusive jet (gluon) frag function ratios

test multiple aspects of theory: flavor difference, multiple momentum scales, etc.

Heavy flavor probes

data compatible with physically intuitive ordering of E-loss:

light < charm < bottom

LHC report: xenon in action

The LHC had the unique opportunity of colliding xenon nuclei over several hours

24 OCTOBER, 2017 | By Michaela Schaumann for the LHC team

One of the xenon ion collisions recorded by the CMS detector. (Image: CMS/CERN)

Change nuclear species: change QGP size/shape/ temperature — crucial lever arm for nuclear physics!

How does energy loss depend on system size?

Obvious "non-scaling" in relative fractions of AA cross-section...

...select same (dN/dη) range — i.e. similar εL^2 (radiative E-loss?)

Impact on theory comparisons...

At a glance, good matching to theory models...

Cancel common data & theory uncertainties in the Pb/Xe ratio...

... better extract temperature / path-length dependence of E-loss

How does the nucleus affect hard processes before QGP effects?

⇒ test in p+Pb collisions

Run 1 p+Pb/pp ratios of dijet- η , bins of p_{τ}^{avg}

Input for universal "nuclear-PDF" picture

impact of Run 1 dijet data on nPDF modification for gluons

Information on "cold" nuclear effects before "hot" quenching

large-x EMC effect region!

Phys. Lett. B 790 (2019) 108

EW probes in Run 2 p+Pb 8.16 TeV

Forward/backward ratios of W production

p+Pb/pp ratio of isolated **γ** production

Ultra-peripheral processes

- EM interactions with nuclei separated, such as light-by-light scattering
- Photo-nuclear (γ+A) interactions:
 - \rightarrow significantly cleaner environment than p+Pb
 - → opportunity to do some "nuclear-DIS"-like physics before LHeC/EIC

Coherent photo-production of J/ψ as probe of nuclear gluon content

(see also: photo-nuclear dijets in ATLAS, Upsilon in CMS, far forward J/ψ in LHCb)

symmetric "ridge" in highmultiplicity **y+A** events! Interpreted here as v₂...

...QGP-like signatures even in lowerenergy ρ +A collisions? Electromagnetic processes still occur <u>even if</u> nuclei overlap

Recent interest in $\gamma\gamma \rightarrow \ell^+\ell^-$ as probe of the QED content of QGP

di-muons balanced in UPC events...

...but acquire **an acoplanarity**when passing through the
deconfined quarks of QGP

Future hard probes of QCD matter

hep-ph/1812.06772

RN-LPCC-2018-07 February 26, 2019

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

HL-LHC WG5 report for HI physics opportunities in Run 3+4:

Higher luminosity, detector upgrades, smaller collision systems

sPHENIX @ RHIC: dedicated "LHCstyle" jet detector in early 2020's

Complementary scientifically (colder QGP, smaller UE) and technically (uses copy of ALICE ITS upgrade)

