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Machine learning and quantum computing
● Machine Learning has become one of the most popular and 

powerful techniques and tools for HEP data analysis
● Machine Learning: This is the field that gives computers “the ability 

to learn without explicitly programming them”. 
● Issues raised by machine learning

○ Heavy CPU time is needed to train complex models
■ With the size of more data, the training time increases very 

quickly
○ May lead to local optimization, instead of global optimization

● Quantum computing
○ A way of parallel execution of multiple processes using Qubits
○ Can speed up certain types of problems effectively
○ It is possible that quantum computing can find a different, and 

perhaps better, way to perform machine learning.
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Ref: “Global Optimization Inspired by Quantum Physics”, 10.1007/978-3-642-38703-6_41



Chen Zhou (University of Wisconsin)       EPS-HEP 2019 July 12, 2019

Our program with IBM Qiskit

Our preliminary program is to: 
     Employing SVM Quantum Variational (QSVM) method 
for LHC High Energy Physics (HEP) analysis with the 
environment of IBM Qiskit, for example ttH (H → 𝜸𝜸), 
Higgs production in association with two top quarks 
analysis.
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* SVM = Support Vector Machine

Our Goal:
Perform LHC High Energy Physics analysis with 
Quantum computing

* IBM Qiskit = IBM Quantum Information Science Kit

(Top)

(Anti-top)

(Higgs)
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An example of classical machine learning: 
ttH (H → 𝜸𝜸) analysis by the ATLAS Collaboration
(ttH: Higgs production in association with two top quarks)

Select events with two photons 

➔Separate to hadronic channel (nlep = 0) and leptonic channel     
(nlep >= 1) 

Background: continuum bkg. (γγ, etc.) and resonant bkg. from other 
Higgs production modes (ggH, etc.)

➔In each channel, train a Boost Decision Tree (BDT, a classical 
machine learning technique) with XGBoost package

create categories based on BDT output  

➔Fit diphoton mass over 7 categories 

Measure ttH production signal strength, etc.
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Phys. Lett. B 784 (2018) 173

ATLAS-CONF-2019-004

https://linkinghub.elsevier.com/retrieve/pii/S0370269318305732
https://cds.cern.ch/record/2668103
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An example of classical machine learning: 
ttH (H → 𝜸𝜸) analysis by the ATLAS Collaboration

● The observed significance is 4.1σ (4.9σ) in ATLAS ttH 
(H→γγ) analysis using 80 fb-1 (139 fb-1) of 13 TeV data

● This talk is to perform the machine learning step of the 
ATLAS ttH (H→γγ) analysis with delphes simulation events 
using quantum machine learning
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Phys. Lett. B 784 (2018) 173, 80 fb-1 ATLAS-CONF-2019-004, 139 fb-1

https://linkinghub.elsevier.com/retrieve/pii/S0370269318305732
https://cds.cern.ch/record/2668103
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Our program with IBM Qiskit
Our preliminary program can be divided into three 
parts with the Environment of IBM Qiskit:
Part 1. Our workflow for quantum machine learning 
process.

Part 2. Employing the quantum method for LHC High 
Energy Physics (HEP) analysis, with quantum 
simulators, for example IBM Qiskit qasm simulator.

Part 3. Employing the quantum method for LHC High 
Energy Physics (HEP) analysis, with IBM quantum 
hardware, for example IBM Q Experience hardware.
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ttH: number of features(variables) = 45

● FeatureMap: Each feature(variable) of input 

event is encoded in the amplitude of one 

separate qubit, but we have many more 

features for an event than available qubits 

(Number of qubits = 5, 10, 20 for example)

● PCA: Principal Component Analysis method 

is used to convert/combine features to less 

features to match the number of qubits.

Support Vector Machine (SVM) quantum 
variational method, for example

Part 1: Our Workflow for Quantum Machine Learning process
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● Employing SVM Quantum Variational for LHC 
HEP analysis
○ For example, ttH (H → 𝜸𝜸), Higgs production 

in association with two top quarks analysis 
○ Exploring different feature maps and 

entanglement methods
○ Training and evaluating quantum machine 

learning methods with different numbers of 
qubits, different number of events, different 
parameters and optimizers
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Part 2: Employing QSVM Variational with Q simulators
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● Definitions
○ BDT(Boosted Decision Tree) method 

is a classical machine learning 
method. Here we are using XGBoost.

○ Q simulator: Quantum circuits 
simulator, such as Qasm simulator.

○ Accuracy: The fraction of correct 
predictions from total predictions.

○ ROC Curve: a graph showing 
background rejection vs signal 
efficiency.

○ AUC: Area Under the ROC Curve
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Part 2: Employing QSVM Variational with Q simulators

Ref: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

AUC

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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Part 2: Employing QSVM Variational with Q simulators
● With 5 qubits, we successfully finished training and testing with 200 

events, 800 events and 3200 events with IBM Qiskit qasm simulator 
(where ‘200’ events means 200 training events and 200 test events; 
same for others. Here events are simulated with delphes).
○ For QSVM, SPSA optimizer is used with 3000 iterations.
○ BDT and QSVM are using exactly the same inputs for comparison.
○ Q simulator: Here Qiskit Qasm simulator is used.

ttH(H->𝜸𝜸) ACCURACY 200 800 3200

QSVM 0.795 0.802 0.768

BDT 0.75 0.785 0.780

ttH(H->𝜸𝜸) AUC 200 800 3200

QSVM 0.865 0.859 0.837

BDT 0.821 0.869 0.863
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● Here are the ROC Curve plots with QSVM(red) and 
BDT(green), for 200 events, 800 events and 3200 
events, with 5 qubits.

● ROC curve(Blue): classical machine learning BDT 
with all 45 variables and all simulated events.

● ROC curve(Red): QSVM, 5 qubits
● ROC curve(Green): classical machine learning 

BDT with the same inputs of 5 variables per event 
as QSVM for comparison.

● For 800 events, the red curve is close to the green 
curve
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Part 2: Employing QSVM Variational with Q simulators
● Here BDT(green) and QSVM(red) are using exactly the same inputs for comparison.
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● Here are the ACCURACY and 
AUC between QSVM(red) and 
BDT(green), with 200 events, 
800 events and 3200 events.
○ QSVM(red) method got close 

accuracy and AUC with 
BDT(green) with 5 qubits and 
limited number of events. But 
it’s still far from BDT with all 
variables and all events(blue).
■ Working on the loss 

functions to improve qsvm 
AUC.
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Part 2: Employing QSVM Variational with Q simulators
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● With the help of IBM Research Zurich, we 
finished some training on the IBMQ hardware 
with 100 training events and 100 test events, 
5 qubits. 

● Because of hardware access time and 
timeout limitation, we only finished very few 
iterations (for example 10,30,50) on the 
hardware, instead of several thousands of 
iterations on the simulators.
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Part 3: Employing QSVM Variational with IBMQ hardware
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● Here are the ACCURACY and AUC 
plots with different number of 
iterations and 100 delphes events.
○ Because of access time limitation, 

on the hardware we only finished 
10,30 and 50 iterations.

● Within limited iterations, the result 
from hardware(red) is compatible with 
the result from simulator(blue) in 
tested iterations.

● The result from simulator(blue) 
reached similar result with classical 
BDT(green) method with enough 
iterations.
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Part 3: Employing QSVM Variational with IBMQ hardware

BDT

Qsvm hardware

Qsvm simulator

BDT

Qsvm hardware

Qsvm simulator

this point is being run

this point is being run
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Part 3: Employing QSVM Variational with IBMQ hardware

● Temporary limitation with IBMQ hardware
○ Only few iterations are tested currently

■ Limited access time
● Long queue time

○ Input preparation and output reading is 
not optimized

○ We are working on running hardware 
with a larger number of iterations   
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Referring to Part 1 of this presentation: 

● We introduced our workflow to employ 
quantum methods for LHC High Energy 
Physics analysis.

16

Summary
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Referring to Part 2 of this presentation: 

● Using IBM Qiskit simulator, we have successfully 
employed Quantum Support Vector Machine method for 
ttH (H → 𝜸𝜸), Higgs production in association with two top 
quarks analysis at LHC with delphes simulation events. We 
have measured the accuracy and AUC with different 
number of events.

● At current stage, with 5 qubits, we reached very close 
accuracy of 0.77 and very close AUC of 0.84, comparing 
with the classical machine learning method(BDT) with 
accuracy 0.78 and AUC 0.88 (BDT and QSVM are using 
exactly the same inputs for comparison). At the same time, 
we are working on the loss functions to improve AUC.
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Summary
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Referring to Part 3 of this presentation: 

● Using IBM Q Experience hardware, we have successfully 
employed Quantum Support Vector Machine method(5 
qubits) for ttH (H → 𝜸𝜸), Higgs production in association 
with two top quarks analysis at LHC with delphes 
simulation events.

● Again, the accuracy and AUC is limited by the iterations. 
But the result is compatible with simulator result, which 
reached similar result with classical machine learning BDT 
with enough iterations. We are working on running 
hardware with a larger number of iterations 
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Summary
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BACKUP SLIDES

19
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● Quantum algorithm running flow, for example IBM Qiskit
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Quantum algorithm running flow

Quantum algorithm Quantum qasm 
circuits

Quantum simulator/ 
Quantum hardware

compiling running

● Issues:
○ The quantum compiling process compiles codes and 

input data together, while classical compiling 
separates codes and input data.
■ With more data, the compiling process will use 

more time and more memory.
■ With different data, a new compiling is required.

* Qasm = Quantum assembly language
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Quantum measurement
● Quantum state is a superposition which contains the 

probabilities of possible positions.

● When the final state is measured, they will only be found in 

one of the possible positions.

○ The quantum state ‘collapses’ to a classical state as a 

result of making the measurement.

● “No-cloning theorem”

○ Impossible to create an identical copy of an arbitrary 

unknown quantum state.

● To obtain the probability of a possible position, some 

number of shots are needed.
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Hardware Information
● Hardware status currently

○ Classical computer:
■ 3~4 GHz
■ Millions of circuits with many cores, GPU 

can have thousands of cores
○ Quantum computer

■ 200 ns per operation
■ 5M Hz
■ Not many parallel channels or threads
■ https://quantumcomputing.stackexchange.c

om/questions/2402/how-many-operations-c
an-a-quantum-computer-perform-per-seco
nd
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https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
https://quantumcomputing.stackexchange.com/questions/2402/how-many-operations-can-a-quantum-computer-perform-per-second
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● How to use quantum computers

a. Convert classical features to be able to be 

processed to quantum computers

■ Feature map

b. Using quantum algorithms to process the data

■ Algorithms developed based on quantum 

computers, such as Quantum Support Vector 

Machine, Quantum annealing, Grover Search 

and so on 

23

How to use quantum computer
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● Quantum feature map: Map bit info non-linearly to 

quantum ‘feature Hilbert space’

○ Tensor product encoding

■ Each feature(variable) of input event is encoded in 

the amplitude of one separate qubit

■ All features of one event is the tensor product of 

corresponding qubits

○ Entanglement between features

■ Without entanglement

■ Between next one feature(linear entanglement)

■ Between all of the next features(full 

entanglement)

24

Tensor product feature map
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● Basic encoding

○ One bit maps to one qubit

○ For example, two bits “01” maps to two qubits 

“|01>”

● Amplitude encoding

○ N classical features maps to log
2
N qubits

○ X = (x
0
, …, x

N-1
),  N=2n

○ |φ
x
>    = Σ   X

i
 *   |i>     ( qubit “|i>” is the i’th 

computational basis state)

○ Looking whether it’s possible and how to do it
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Other feature map methods
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● Support Vector Machine ( SVM )

○ a supervised ML that draws a 

decision boundary between 

two classes to classify data 

points

○ Originally it’s constructed as a 

linear classifier

○ Maximize the distance from 

the line or hyperplane to the 

nearest data point on each 

side
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Ref: Support Vector Machine and Its 
Application(Mingyue Tan, 2004)

Ref: Support vector machine(Wikipedia)

Support Vector Machine
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● Kernel function

○ Often the sets of data points 

are not linearly separable

○ Map data points to a much 

higher dimensional space 

which presumably making the 

separation easier

27

■ Performance depends on different kernel functions

■ Limitation to successful solutions when feature 

space becomes large

■ Computationally expensive to estimate the kernel

Ref: Support vector 
machine(Wikipedia)

SVM kernel function
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● Quantum SVM

○ Take advantage of the large dimensionality of 

quantum Hilbert space

■ Non-linearly maps input data into a very large 

dimensional feature Hilbert space

■ Exploiting an exponentially large quantum state 

space

○ Take advantage of the quantum speedup

○ Estimate the kernel and optimize the classifier

28

Quantum SVM


