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The electromagnetic processes of annihilation of (ete™) pairs, generat-
ed in various high-energy processes ( e.g., in nucleus-nucleus and hadron-
nucleus collisions ) into heavy flavor lepton pairs are theoretically studied in
the one-photon approximation, using the technique of helicity amplitudes.
For the process ete™ — putpu~, it is shown that — in the case of unpolarized
electron and positron — the final muons remain unpolarized as well, but
their spins prove to be strongly correlated. For the final (u*p™) system,
the structure of the triplet states is analyzed and explicit expressions for
the components of the spin density matrix and the correlation tensor are
derived; besides, the formula for the angular correlation at the decays of
final muons p* and p~ is obtained.

It is demonstrated that spin correlations of final muons in the process
of electron-positron pair annihilation have the purely quantum character,
since one of the Bell-type incoherence inequalities for the correlation ten-
sor components is always violated ( i.e. there is always one case when the
modulus of sum of two diagonal components of the correlation tensor ex-
ceeds unity ). Besides, the additional contribution of the weak interaction
of lepton neutral currents through the virtual Z° boson is considered in
detail, and it is established that, taking into account the weak interaction,
the qualitative character of the muon spin correlations does not change.

Analogous analysis can be wholly applied as well to the final 7 leptons
formed in the process eTe™ — 7777, which becomes possible at consider-
ably higher energies .
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1  Helicity amplitudes for the annihilation process
ete” — utu”

In the first non-vanishing approximation over the electromagnetic con-
stant e?/hic, the process of conversion of the electron-positron pair into the
muon pair is described by the one-photon diagram (see Fig. 1).

Due to the electromagnetic current conservation, the virtual photon with
a time-like momentum transfers the angular momentum .J = 1 and negative
parity. Taking into account that the internal parities of muons u™ and u~
are opposite, the (utp™) pair is generated in the triplet states (the total
spin S = 1) with the total angular momentum .J = 1 and with the orbital
angular momenta L = 0 and L = 2, being the superpositions of the states
35, and *D; with the negative space parity.

The respective helicity amplitudes have the following structure:

Fan(0,6) = Rua(E) dV)\(8) exp(ire), (1)

where # and ¢ are the polar and azimuthal angles of the flight direction of
the positively charged muon (") in the center-of-mass (c.m.) frame of the
considered reaction with respect to the initial positron momentum;

dE\l,)A(Q) are the Wigner functions (elements of the finite rotation matrix)
for the angular momentum J = 1;

A is the difference of helicities of the positron and electron, coinciding
with the projection of total spin and with the projection of total angular
momentum of the (ete™) pair onto the direction of positron momentum
in the c.m. frame (the projection of orbital angular momentum onto the
momentum direction equals zero);

A’ is the difference of helicities of the muons u™ and p~, coinciding with
the projection of total angular momentum of the (u*p~) pair onto the
direction of momentum of the positively charged muon p* in the c.m. frame
(see, for example, [1,2]).

Due to the factorizability of the Born amplitude, we can write:



Here A" and A take the values +1,0, —1; in doing so, the parameters r/(\ﬁf),

r/(\e) depend upon the initial energy E of the positron (electron) in the c.m.
frame of the pair ete™, but do not depend upon the angles 6 and ¢.
On account of the space parity conservation in the electromagnetic in-

teractions, we have:
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In accordance with the structure of electromagnetic current for the pairs
eTe” and pTp~ in the c.m. frame [1], the following relations are valid:

m e Me (e
= =\ 1= ) = (4)

where m,, and m, are the masses of the muon and electron, respectively, 3, is
the muon velocity in the c.m. frame. Since for the process ete™ — u* ™ the
inequality &' > m, > m, is always satisfied, the contribution of electron-
positron states with antiparallel spins (equal helicities) can be neglected. In

doing so, Rao(E) = 0.

2  Effective cross section and angular distribution

_|_

The cross section of the process ete™ — putu~ for the unpolarized elec-

tron and positron, integrated over the solid angle and summed over muon
polarizations, is expressed through the helicity amplitudes Ry (E):

7= i% (Z >_(Rua(E))? / (A (8)d(cos e>) be =

Pe
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Here p, = /E? — mz is the muon momentum in the c.m. frame, p. =
VE? —m? = FE is the positron (electron) momentum in the c.m. frame.
Since, in accordance with Eq.(4), r(()e) ~ 0, it follows from Eqs. (2)-(5) that:



o= 4?” () () (1 + Qm—Ef;> J1- Z—f‘ (6)

The term m2/2E® in brackets in formula (6) is connected with the

contribution of the amplitude r(()“)(E). The calculation of the one-photon
diagram gives:

(1) — e _
IE) = (E) = M

where e is the electron charge. If the relativistic invariant

$ = (pe+ —l—pe—)Q = (py+ —|—pu—)2 = 4F?

is introduced, the expression for the cross section of the process ete™ —
ptp~ takes the following form [1]

A7 e? 2m? 4m?

S

Using the explicit formulas for d-functions corresponding to the angular
momentum .J =1 [1,2]:

1 1 1+ cost 1 1 1 —cost
Aa0) =dl ) = —5—. ! (6) = d"],(0) = ——.

1 1
&), (0) = =d\) (8) =

we find the angular distribution of muon emission, normalized by unity, in
the c.m. frame for the considered annihilation process:

3 14 cos?@+ (m2/E?)sin6 3 2 — 3?sin%4
AW it - = ( “/ ) dQ) = — 6“ dQ, (9)
167 14 (m2/2E7?) 87 3 — 3

where d 2 is the element of solid angle.
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3  Structure of the triplet states of the (u*p~) system
formed in the process ete™ — putu~
Taking into account the relations (1) -(4) for the helicity amplitudes,
it is clear that if the positron and electron are totally polarized along the
positron momentum in the c.m. frame, then the (u*p™) system is produced
in the triplet state of the following form:

gy = V2
\/Q—ﬁZsiHQQ

1+ cos sin ¢ 1 —cos#
_ 1Y — /1 =32 —| -1 ) 1
(T - m R0+ ) o)

Here 3, = \/1 — (m2/E?) is the velocity of each of the muons, as before;

[+1)=1+1/2" o]+ 120 [-1) =] -1/2)¢ o | -1/2)¥),

10y = —= (14 1/2)0%) ] = 1/2)07) 4| = 17207 & | 41/2)07))

V2

are the states with the projection of total spin of the (u* ™) pair onto the
direction of momentum of the muon p™ in the c.m. frame of the reaction
te™ — putu~, equaling +1, —1 and 0, respectively.

Let us note that the real values of the coefficients of superposition of the
triplet states |+ 1), |0) and | — 1) in the state |¥)F1) (10) correspond to
the choice of the quantization axes z’ and z along the positron momentum

e

and p™ momentum, respectively, in the c.m. frame of the reaction ete™ —
pt e, and the axis y - along the normal to the plane of this reaction.

If the positron and electron are totally polarized in the direction being
antiparallel to the positron momentum, then the (u*p~) pair is generated
in the following triplet state:

V2
= X
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1 — cosf sin ¢ 1+ cos
- — 32 R
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4  Spin density matrix and correlation tensor of the
(nTp”) pair

If the positron and electron are not polarized, then, since r(® = 0, the
final state of the (u* ™) pair represents a noncoherent mixture of spin states
|T)*D and [W)~!, each of them being realized with the relative probability
of 1/2. Taking into account Eqs. (10) and (11), the elements of the spin
density matrix of the (u*p™) system in the representation of triplet states
|+1), ]0) and | — 1) have the form:

1+ cos?d i sin% 6
prist =Pt =M ———— pa=pap=h——,
- 1= .
Po+1 = P+10=—Po—1 = —p-10 = — I 5 cos 6 sin 6,
o= K(1— #)sin?f, K=—0 b (12)
’ a 2 - 32 sin’ §

The spin states of two particles with spin 1/2 are characterized by the
polarization vectors ;= <6'(1)>, Co= <6'(2)> and the components of the cor-
relation tensor Ty = <6i1 ® 6]({2)>. Here ¢ = {6,,5,,0.} is the vector Pauli
operator, d;, 6 are the Pauli matrices, i,k — {1,2,3} — {x,y, z}; the axis
z is directed along the momentum of the positively charged muon p* in
the c.m. frame of the considered reaction, and the axis y is directed along
the normal to the reaction plane; the symbol (...) denotes the averaging
over the quantum ensemble. If both the particles are not polarized and
the correlations are absent, then T;; = 0. For two independent particles
with the polarization vectors {; and {, the correlation tensor is factor-
ized : T3, = (;(); in so doing, the “trace” of the correlation tensor equals

In the case of triplet states of two spin-1/2 particles, the polarization
parameters are expressed through the density matrix elements specified in
the representation of triplet states |+ 1), [0) and | — 1) with the definite
total spin projections onto the axis z [3.4] :



¢i=¢=¢ G =V2Re(ppo+po10), G =—V2Im(piio— porp).
C:=pri+1—pP-1-1; Lo =poo+2Repri 1, Tyy=poo—2Re py1_1,
T..=pa+1+p-1-1—poo=1-=2py0; Toy=Ty =—-2Impy 1,

T.,=T,. = \/§Re (P+1,0 - p—l,O)a Tyz = sz = —\/511’1’1 (P+1,0 + p—l,O)-
(13)

In doing so, the following equalities hold:

T=T,,+T,+T..=1, T,+T,=1- 2w, (14)

where wy = pg g is the occupancy of the triplet state with the zero projection
of total spin onto the axis z.

[t is easy to see from Eqs. (12) and (13) that, at the annihilation ete™ —
pt i~ of the unpolarized positron and electron, the produced muons p* and
1~ are unpolarized (Cw = Q- = 0), but their spins are correlated: the
correlation tensor components have the following form (see also [4]):

() (2 — ﬁZ) sin’ 6 o) ﬁi sin? ¢
e 2 — 32 sin?g = "W 2 — 32 sin? 6’
Tt ) 2 cos? 6 + ﬁi sin? # Tt ) (1- 62)1/2 sin 20
= 2 3 sin?¢ T T 2 3 sin’ §
W) = T =, (15)

The “trace” of the correlation tensor of the (u*u™) pair is:

T = (o) @ o) = TWW ) + T 4 T =1, (16)

just as it should hold for any triplet state ).

) For the singlet state 7' = —3 ; in the general case, T' = p; — 3p;, where p; and p, are the fractions of
the triplet and singlet state, respectively [3-5].



5 Angular correlations at the joint registration of
decays of the muons ™ and pu~

The “trace” of the correlation tensor T determines the angular corre-
lation between flight directions for the products of decay of two unstable
particles with spin 1/2 in the case when space parity is not conserved [3-7].

Actually, the angular distribution at the decay of any polarized unstable
particle with spin 1/2 under space parity nonconservation, normalized by
unity, has the form (see, for example, [8]):

1
dW = E(l +an)dQy,,

where ¢ is the polarization vector of the unstable particle, a is the angular
asymmetry coefficient, n is the unit vector along the momentum of the
particle, formed in the decay, in the rest frame of the decaying unstable
particle.

Then the double distribution for the flight directions of the decay prod-
ucts of two unstable particles under space parity nonconservation, normal-
ized by unity, is as follows [3, 4]:

IW =

3 3
(14 a1 ¢1ng + azang + ajay Z Z Tk nying)d Qy, d Sy,
1=1 k=1

1672
(17)

Here (1 and (2 are the polarization vectors of the first and second un-
stable particle, a; and a9 are the coefficients of angular asymmetry for the
decays of the first and second particle; n; and ny are unit vectors defined in
the rest frames of the first and second unstable particle, respectively, and
specified with respect to a unified system of spatial coordinate axes [6, 7];
just as before, i,k — {1,2,3} = {z,y,z}.

Using the method of moments, the components of the polarization vec-
tors and correlation tensor can be found as a result of averaging the corre-
sponding combinations of trigonometric functions of angles over the double
distribution of decay directions [3]:

3 3 9
Cri=—(ni), Cop= a_<n2,k>7 Ty, = (nying k). (18)

an 2 o5 e3)




In doing so, the projections of the unit vectors n; and ns onto the coor-
dinate axes are:

Ny, =sinbjcos ¢, ny, =sinbsing;, ny, = cosby;

Ny, = sinfy cos ¢z, ng, =sinbysingy, ng . = cos by, (19)

where 6, ¢; and 5, @9 are the polar and azimuthal angles in the rest frames
of the first and second unstable particle, respectively, with respect to the
unified system of axes (z,y, 2).

The integration of the double distribution of flight directions over all
angles, except the angle 0 between the vectors n; and ns, leads to the
following formula for the angular correlation [3, 4]:

dW = % (1 + a1§2T CoS 5) d(—cosd); cosd =mn;n,. (20)

Let us apply Eq. (20) to the decays of the muons u* and p~ produced in
the process of electron—positron pair annihilation ee™ — u*p~. According
to Eq. (16), in this case the “trace” of the correlation tensor of the muon
pair is equal to unity (7" = 1). It is known that the asymmetry coefficient in
the angular distribution of electrons at the decay of the polarized negatively
charged muon p~ — e7v,7,, integrated over the electron energy spectrum,
equals —1/3 (a1 = —1/3) [8]. Due to the C'P-invariance, the asymmetry
coefficient in the angular distribution of positrons at the decay of the po-
larized positively charged muon p* — e*v,v,, integrated over the positron
energy spectrum, amounts to +1/3 (as = 4+1/3). As a result, we obtain
the following formula for the angular correlation at the decays = — e~ v, 77,
and pt — etv,v,

_ 1 1
(tp™) — = _ _
dW > (1 o cos 5) d(— cosd). (21)



6 Coherent properties of the correlation tensor and
violation of “classical” incoherence inequalities in
the process ete™ — putu~

Previously it was shown in the papers [3,4] that in the case of incoherent
mixtures of factorizable states of two particles with spin 1/2 the modulus
of the sum of any two (and three) diagonal components of the correlation
tensor cannot exceed unity, i.e. the following inequalities are satisfied:

|Tm+Tyy| S 17 |Tl‘l‘ +Tzz| S 17 |Tyy +Tzz| S 17

7| = Toe + Ty + T2z < 1.

However, for nonfactorizable (entangled) states some of these inequalities
may be violated. In particular, for the singlet state (zero total spin) we have:

Txx + Tyy - Txm + Tzz = Tyy + Tzz = —2, 1T = Txm + Tyy + Tzz = —3.

In the case of triplet state |0) with the zero projection of total spin
onto the axis z, the diagonal components of the correlation tensor are:
Tyr =Ty, =1,T,, = —1, and one of the incoherence inequalities is violated:
Toe + T, =2.

In the process of annihilation of the unpolarized positron and electron

ete”™ — ptp~, the muon pair is produced in the nonfactorizable two-particle

quantum states |[¥)F1) and |U)(=D ( see Eqs. (10) and (11)). In so doing,
one of the incoherence inequalities is violated: indeed, using Eqs. (15), we
obtain at the angle 6 # 0:

_ _ _ 2
TWre™) Lpwte™) =1 _ 7ete™) = >
v tia vy 2 — 63 sin? ¢

1. (22)

Our consideration relates, of course, also to the process ete™ — 7777,
with the replacements m, — m,, 3, — ;.

At very high energies E > m, (m;), when 3, =~ 3, — 1, the nonzero
components of the correlation tensor take the following values:
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sin” 0 sin”
1+ cos?2@’ v 1+ cos?2@’ (23)
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It is obvious that one of the incoherence inequalities is violated as before:

7 Incorporation of the weak interaction of neutral
currents through 7" boson

At very high energies the annihilation processes eTe™ — putu=, ete” —
7777 are conditioned not only by the electromagnetic interaction through
the virtual photon, but also by the weak interaction of neutral currents
through the virtual Z° boson [8] ( see Fig. 2 ).

The interference of amplitudes of the purely electromagnetic and weak
interaction leads to the charge asymmetry in lepton emission and to the
effects of space parity violation. In the framework of the standard model
of electroweak interaction, at the electron—positron pair annihilation the
pairs utpu~, 777 are produced in the states 3S;, 3D; with the negative
space parity and, due to the weak interaction, also in the state * P, with the
positive space parity. In doing so, the total angular momentum is J = 1
and C'P parity of the pairs is positive.

Owing to the structure of “left” and “right” components of neutral cur-
rents, representing the combinations of the vector and axial currents (V — A)
and (V + A), respectively, at high energies £ >> m. > m, the nonzero he-
licity amplitudes of the processes e"e™ — putu~, ete™ — 7777 in the c.m.
frame have the following form [8]:

Ry (E) = % 1+ (5 - %)2 , Ro(EB)= %[1 + 27,
Rii(B) = BoB) = o [1+06 (- 3] (24)

the helicity amplitudes Ryy, R are practically equal to zero at high en-
ergies B > m; > m,,. Here { = sin?fy < 1/4 , Oy is the Weinberg angle
(angle of gauge boson mixing), the parameter x determines the contribution
of weak interaction. In doing so,
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1 S
_ 25
‘ sin? Oy cos? By s — (Mgo — i(T20/2))% 25)

where s = (2E)2, My =~ 91.2 GeV is the mass and I'yo = 2.5 GeV is the
width of the Z° boson. According to the standard model of electroweak
interaction (see, for example, [8]),

1 1 V2GpM,

~

sin? Oy cos2 by E(1—§) o ;

here Gp = 1.166 - 107° (GeV)‘Q i1s the universal Fermi constant of weak
interaction, a = 1/137 is the electromagnetic constant. At energies 2F <
Mzo (below the resonance energy) the parameter x < 0, and at energies
2E > Mo (above the resonance energy)— x > 0; at the resonance energy
2F = Mz the magnitude x &= —i 208 is the purely imaginary number.

Taking into account Eqs.(24), the differential cross section of the annihi-
lation process at the collision of an unpolarized positron with an unpolarized
electron is as follows:

92 (0) = L{R0E) + BB

(14 cos 9)2+
d$

4

(R (B4 R (E) Ly

[a;(E) (14 cos?6) 4 2a_(E) cos ). (26)

2

?

a_(E):—x—l—i (l—g)QxQ. (27)
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In so doing, the factor of charge asymmetry is A =a_/a, =
(x/8) + O(x?). At the transition through the resonance region, the asym-
metry factor sharply changes the magnitude and sign: when E < M0 /2,
r < 0, A < 0, then the positively charged muon flies predominantly into
the backward hemisphere of the c.m. frame of the reaction with respect
to the positron momentum; when E > My0/2, x > 0, then always A > 0,
and the positively charged muon flies predominantly into the forward hemi-
sphere with respect to the positron momentum. Meantime, at the absence
of weak interaction, the angular distribution of leptons in the c.m. frame is
symmetric in the first order over the electromagnetic constant e?/he.

If the weak interaction contribution is neglected, then the lepton pairs,
generated at the annihilation of the unpolarized positron and electron, are
correlated but unpolarized. Due to the weak interaction through the ex-
change by the virtual Z% boson with the nonconservation of space parity,
the final leptons acquire the longitudinal polarization. Since the lepton pairs
are produced in the triplet states, the polarization vectors of the positively
and negatively charged leptons are the same, and their average helicities
Ar = —A_ have different signs in consequence of the opposite directions of
momenta in the c.m. frame.

Taking into account Eqs. (24), the average helicities of the positively and
negatively charged muons have the form

C(E)
ay(E)(1 4 cos?8) +a_(E)cost’

Ay =—A_ = (28)

where the quantities a; (E) and a_(F) are described by Eqs. (27),
1 b
b (5‘5) ] — (1465 =

:%(i_g)x[y+%(%ﬂ—£+i)} (29)

At the energies below and above the resonance energy, the average helic-
ities of each of the final leptons have different signs: when E < My0/2, then
r<0and Ay <0, A_ > 0; when E > Mo, then x > 0 and A, >0, A_ <0.
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The structure of the correlation tensor of the final leptons is, on the
whole, similar to that for the case of purely electromagnetic annihilation at

high energy. In doing so, the nonzero components of the correlation tensor
are: 1., =1, T, = =T, as before. According to Eqs. (12) and (24),

[1+a(8— 58+ +08(E—3)]
ar(E) (14 cos?8) 4+ 2a_(E)cosb

T,, = sin’# (30)

Again one of the incoherence inequalities for the correlation tensor com-
ponents is violated: T}, + 1., > 1.

Thus, the consequences of the quantum-mechanical coherence for two-

particle quantum systems with nonfactorizable internal states manifest them
selves distinctly in spin correlations of lepton pairs produced in the anni-
hilation processes ete™ — putu~, ete™ — 7777, and they can be verified
experimentally ( see also [9- 12] ) .

8 Summary

1. Using the technique of helicity amplitudes, the electromagnetic process
ete”™ — utp~ is theoretically investigated in the one-photon approximation.
The structure of triplet states of the final (u*p™) system is found.

2. It is shown that, if the primary electron and positron are unpolar-
ized, the final muons p* and p~ are also unpolarized but their spins are
correlated. Explicit expressions for the correlation tensor of the final (p*p™)
system are derived.

3. Expression for the angular correlation at the decays of muons p* and
1=, produced in the process ete™ — p*p~, into the channels pt — e*r,.p,
and p~ — e" v, is obtained .

4. Tt is shown that in the annihilation processes ete™ — putpu=, ete™ —

*t7~ one of the incoherence inequalities for the correlation tensor compo-

nents is always violated.

T

5. Additional contribution of weak interaction of neutral currents through
the exchange by the virtual Z° boson into the annihilation processes ete™ —

ptpu~, efe” — 7777 at high energies is analyzed.
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Fig.1. One-photon Feynman diagram for the electromagnefic process
ete™ = ptp .

Fig.2. Process ete™ — putp~ with the additional contribution of weak
interaction of neutral currents .
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