Nonfactorizable charm – loop effects in exclusive FCNC *B* – decays

Dmitri Melikhov

SINP, Moscow State University & HEPHY, Austrian Academy of Sciences, Vienna

We revisit the calculation of nonfactorizable contributions induced by charm-quark loops to the amplitudes of exclusive FCNC *B*-decays. Nonfactorizable contributions may be expressed via the three-particle quark-antiquark-gluon distribution amplitude (3DA) of the *B*-meson $\langle 0|\bar{q}(x)G_{\mu\nu}(y)b(0)|B(p)\rangle$. We show that the knowledge of the full generic 3DA with non-aligned arguments, is necessary for a proper summation of large $(\Lambda_{QCD}m_b/m_c^2)^n$ corrections. In particular, the dependence of 3DA on variable $(x - y)^2$ is crucial.

Based on: A. Kozachuk, D. M., PLB786, 378 (2018).

FCNC $b \rightarrow s$ and $b \rightarrow d$ transitions do not occur at the tree level in SM and proceed via loops, where *t*, *c* and *u*-quarks contribute. BRs of FCNC decays are small; on the other hand, new particles may show up virtually in the loops. Therefore, FCNC decays are most popular candidates for indirect search of physics BSM.

Illustration: $B \to K l^+ l^-$ decay $0 < \sqrt{s} < (M_B - M_K)$, s - momentum squared of $l^+ l^-$ pair.

- Charmonia appear in the kinematical decay region. In the charmonia region, charm contribution dynamically enhanced and dominates.
- Far from the charmonia region, top dominates (black dashed). Still, to study possible NP effects, Need to gain theoretical control over charm contributions

Charm generates two different topologies: (a) **penguin topology** (b) **weak annihilation topology**

• Account of hard gluon exchanges lead to the four-quark operators

$$H_{\text{eff}}^{b \to s\bar{c}c} = -\frac{G_F}{\sqrt{2}} V_{cb} V_{cs}^* \{ C_1(\mu) O_1 + C_2(\mu) O_2 \}$$

with

$$O_1 = \bar{s}^j \gamma_\mu (1 - \gamma_5) c^i \bar{c}^i \gamma^\mu (1 - \gamma_5) b^j, \qquad O_2 = \bar{s}^i \gamma_\mu (1 - \gamma_5) c^i \bar{c}^j \gamma^\mu (1 - \gamma_5) b^j,$$

and the similar terms with $c \rightarrow u$ (*i*, *j* color indices). The SM Wilson coefficients at the scale $\mu_0 = 5$ GeV [corresponding to $C_2(M_W) = -1$]: $C_1(\mu_0) = 0.241$, $C_2(\mu_0) = -1.1$.

These operators lead to factorizable contributions to the amplitudes of exclusive FCNC B-decays.

• <u>Soft gluon</u> exchanges between the charm-quark loop and the *B*-meson loop lead to <u>nonfactorizable</u> contributions to the amplitudes.

• Nonfactorizable charm contributions are comparable with factorizable contributions

How do we know that? Compare charmonia in l^+l^- -annihilation and in FCNC *B*-decays:

The patterns of charmonia in charm contribution to vacuum polarization (left) and in $B \rightarrow K l^+ l^-$ (right) are different. The difference is due to nonfactorizable contributions.

• In some cases, factorizable charm contribution vanishes and thus only nonfactorizable charm contributes (e.g in $B \rightarrow K^* \gamma$)

We need formalism to calculate nonfactorizable charm effects in QCD.

At $q^2 \ll 4m_c^2$, the charm loop may be calculated in pQCD. <u>Factorizable part</u>: product of $B \rightarrow M_f$ form factor and the charm polarization function. Nonfactorizable part (illustration for scalar "quarks" and scalar "gluon"):

$$A(q,p) = \frac{1}{(2\pi)^8} \int \frac{dk}{m_s^2 - k^2} \int dy e^{-i(k-p')y} \int dx e^{-i\kappa x} d\kappa \Gamma_{cc}(\kappa,q) \langle 0|\bar{s}(y)G(x)b(0)|B_s(p)\rangle$$

The 3DA depends on 5 variables xp, yp, x^2 , y^2 , xy ($p^2 = M_B^2$) and may be parametrized as follows:

$$\langle 0|s^{\dagger}(y)G(x)b(0)|B_{s}(p)\rangle = \int d\lambda e^{-i\lambda yp} \int d\omega e^{-i\omega xp} \Phi(\omega,\lambda) \left[1 + O\left(\Lambda_{\rm QCD}^{2}x^{2},\Lambda_{\rm QCD}^{2}y^{2},\Lambda_{\rm QCD}^{2}(x-y)^{2}\right)\right]$$

 $\Phi(\omega, \lambda)$ is peaked at $\lambda, \omega \sim \Lambda_{\rm QCD}/m_b$.

The contribution of $\Phi(\omega, \lambda)$ to A(q, p) is easy to calculate (see the right plot).

Notice: the gluon is soft as the major part of the *B*-meson momentum is carried by *b*-quark.

Contributions of other terms to the amplitude A(q, p) **relative to the** $\Phi(\omega, \lambda)$ **term:**

$$\Lambda^2_{\rm QCD} y^2 \to \frac{\Lambda_{\rm QCD}}{m_b}, \qquad \Lambda^2_{\rm QCD} x^2 \to \frac{\Lambda^3_{\rm QCD} m_b}{m_c^4}, \qquad \Lambda^2_{\rm QCD} xy \to \frac{\Lambda_{\rm QCD} m_b}{m_c^2}.$$

Nonfactorizable corrections are expressed via

$$\langle 0|s^{\dagger}(y)G(x)b(0)|B_{s}(p)\rangle = \int d\lambda e^{-i\lambda yp} \int d\omega e^{-i\omega xp} \Phi(\omega,\lambda) \left[1 + O\left(\Lambda_{\rm QCD}^{2}x^{2},\Lambda_{\rm QCD}^{2}y^{2},\Lambda_{\rm QCD}^{2}(x-y)^{2}\right)\right],$$

The new result is that the knowledge of its functional dependence on $(x - y)^2$ is essential for a proper resummation of large $\Lambda_{QCD}m_b/m_c^2$ corrections.

Previosuly, it way believed that the 3DA with aligned arguments $x_{\mu} = uy_{\mu}$, on the LC $x^2 = 0$, $y^2 = 0$ and $(x - y)^2 = 0$ is sufficient to calculate nonfactorizabe contributions.

One needs the off-LC contributions. A challenge for future calculations

Conclusions and outlook

• A serious open theoretical problem in FCNC B-decays is the contribution of charming loops which "pollute" the differential distributions.

• At $q^2 \ll 4m_c^2$, a consistent description of charming loops requires the knowledge of off-LC 3DAa.

• In QCD, *B*-meson 3DAs with non-aligned arguments involve new Lorentz structures compared to LC 3DAs. Respectively, new invariant amplitudes arise.

$$\langle 0|\bar{s}(y)G_{\alpha\beta}(uy)b(0)|B(v)\rangle = \int d\lambda e^{-i\lambda yv} \int d\omega e^{-i\omega uyv} \left[\frac{y_{\alpha}v_{\beta}}{yv} - \frac{y_{\beta}v_{\alpha}}{yv}\right] \Phi(\lambda,\omega).$$
(1)

For non-aligned case, new structures and new amplitudes arise:

$$\langle 0|\bar{s}(y)G_{\alpha\beta}(x)b(0)|B(v)\rangle = \int d\lambda e^{-i\lambda xv} \int d\omega e^{-i\omega yv} \times \frac{1}{2} \left[\left(\frac{x_{\alpha}v_{\beta}}{xv} - \frac{x_{\beta}v_{\alpha}}{xv} + \frac{y_{\alpha}v_{\beta}}{yv} - \frac{y_{\beta}v_{\alpha}}{yv} \right) \Phi_{S}(\lambda,\omega) + \left(\frac{x_{\alpha}v_{\beta}}{xv} - \frac{x_{\beta}v_{\alpha}}{xv} - \frac{y_{\alpha}v_{\beta}}{yv} + \frac{y_{\beta}v_{\alpha}}{yv} \right) \Phi_{A}(\lambda,\omega) \right].$$

$$(2)$$

 $\Phi_S = \Phi$ from (1), whereas Φ_A is new. If the contributions induced by Φ_A are not suppressed, a consistent calculation of the decay amplitude *A* needs further inputs.

Detailed investigations are necessary.