BSM search with high intensity muon beam in MEG II experiment

Kei Ieki

on behalf of MEG II collaboration

EPS-HEP conference 2019

Why search $\mu \rightarrow e\gamma$?

- LFV is predicted by many BSMs $Br(\mu \to e\gamma) \sim O(10^{-14})$ (e.g. SUSY-seesaw)
- Experimental bound is already close to BSM prediction $Br(\mu \to e\gamma) < 4.2 \times 10^{-13} \ (90\% \text{ C.L., MEG})$

 $\mu \rightarrow e\gamma$ is a powerful tool to probe BSM!

Example: $\mu \rightarrow e\gamma$ contour in SUSY parameter space

D case; $A_0 = -2$, $\mu > 0$, $\tan \beta = 30$

Phys. Rev. D91, 033007 (2015)

Signal and BG of $\mu \rightarrow e\gamma$

What we need for $\mu \rightarrow e\gamma$ search:

- e^+ , γ detector with good energy, time, position resolution
- High intensity μ beam

MEG (2009-2013)

lm

Key concepts in MEG:

World's most intense DC μ beam

 3×10^7 muons/s at PSI

900L liquid Xe detector

- → High light yield etc.
- \rightarrow Good $E_{\gamma}, t_{\gamma}, x_{\gamma}$ resolution

Low mass drift chamber

- → less multiple scattering
- \rightarrow good p_e , x_e resolution

Gradient B-field

→ reduce BG hits from low momentum e+

MEG result (2016)

 7.5×10^{14} stopped muons were used. No excess of events observed.

$$Br(\mu \to e\gamma) < 4.2 \times 10^{-13} \text{ (90\% C.L.)}$$

MEG II upgrade

With same concept as in MEG, upgrade the beam and detectors.

- μ beam rate increase: $3 \times 10^7 \rightarrow 7 \times 10^7 \mu/s$ (It was reduced in MEG to cope with accidental BG.)
- Detector resolution × 2 improvements (energy, timing, position)
 Efficiency × 2 increase
- Additional detector to identify BG γ

Target sensitivity:

 6×10^{-14} (90% C.L.) in 3 years

→ 10 times improvement from MEG

 e^+ : drift chamber

- Cylindrical stereo wire chamber (stereo angle: $6 8.5^{\circ}$)
- Low mass (1.58 × 10⁻³ X_0 along track) \rightarrow low multiple scattering \rightarrow good resolution Gas: He(85%)+iC₄H₁₀(15%), Wire: 20µm W for anode, 40 or 50µm Al for cathode
- 1920 anode wires in 6-8mm interval, 9 layers \rightarrow many hits per track \rightarrow good resolution ($\sigma_E \sim 130 \text{ keV}$, $\sigma_{angles} \sim 5 \text{ mrad expected}$)
- No extra material between timing counter \rightarrow efficiency $\times 2$

module chambers

e^+ : drift chamber

- Cylindrical stereo wire chamber (wire angle: $6 8.5^{\circ}$)
- Low mass $(1.58 \times 10^{-3} \text{ X}_0 \text{ along track}) \rightarrow \text{low multiple scattering} \rightarrow \text{good resolution}$ Gas: He(85%)+iC₄H₁₀(15%), Wire: 20um W for anode, 40 or 50um Al for cathode
- 1920 anode wires in 6-8mm interval, 9 layers \rightarrow many hits per track \rightarrow good resolution ($\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad expected)
- No extra material between timing counter \rightarrow efficiency $\times 2$

e^+ : timing counter

6 SiPMs

e^+ : timing counter

6 SiPMs

γ: liquid Xe detector

Reuse LXe from MEG

- Large light yield (~75% of NaI)
- Fast $(\tau_{\text{decay}} = 45 \text{ns})$
- High stopping power (X_0 =2.8cm)
- Uniform (liquid)

 \rightarrow good $E_{\gamma}, x_{\gamma}, t_{\gamma}$ resolution

Replaced 216 PMTs (2-inch) to 4092 SiPMs (12mm)

- → Uniformity of sensor coverage and granularity improved!
- $\rightarrow E_{\nu}$ and x_{ν} are expected to improve by factor of 2

γ: liquid Xe detector

Energy (MeV)

Background identifying detector

New detector to identify radiative μ decay $\mu \rightarrow e\nu\nu\gamma$

main source of BG γ 📑

Detects low momentum e^+ associated with γ

 $E_e \sim 1 - 5 \text{ MeV}$

LYSO crystals + SiPM

 \rightarrow measure E_e (to distinguish e from normal μ decay)

Plastic scintillator + SiPM

 \rightarrow measure T_e

Sensitivity improvement expected (DS only):

 $7.0 \times 10^{-14} \rightarrow 6.0 \times 10^{-14}$

DAQ, trigger

New DAQ + trigger system developed by PSI+INFN: WaveDAQ

- Waveform (1-2 GHz) readout of ~9000 channels with DRS chip (Domino Ring Sampler)
- Trigger is integrated
- → Reduced rack space,
 Sophisticated trigger
 (High energy γ, coincidence with e⁺ back-to-back)
- Amplifier, shaper and HV supply for SiPMs

Overall status

Pre-engineering run with **all** detectors installed was done in 2018.

 $-e^+$ drift chamber

Partial operation due to electrostatic instability problem

- → Fixed by elongation of wires. Broken wires are removed.
- e^+ timing counter already achieved 38.5 ps resolution
- γ liquid Xe detector Successfully observed γ events. T_{γ} resolution look
 - \rightarrow next: measure energy and position resolution $\sim 50 \; \text{MeV} \; \gamma \; \text{from} \; \pi^0 \; \text{decay}$
- Background identifying detector Successfully demonstrated BG γ identification
- Electronics

Part of the channels were available in 2018

→ Start mass production soon

Overall status

Pre-engineering run with all detectors in

- e⁺ drift chamber

Partial operation due to electrostatic in

- → Fixed by elongation of wires. Broken
- e⁺ timing counter already achieved 38.5 ps resc
- γ liquid Xe detector

Successfully observed γ events. T_{ν} resolution looks good (44ps).

- → next: measure energy and position resolution with
 - ~50 MeV γ from π^0 decay
- Background identifying detector Successfully demonstrated BG γ identification
- Electronics
 Part of the channels were available in 2018
 - → Start mass production soon

Summary

- $\mu \rightarrow e\gamma$ is a golden probe for searching BSM physics.
- MEG II utilizes high intensity μ beam at PSI to search $\mu \to e \gamma$ aiming at $Br(\mu \to e \gamma) < 6 \times 10^{-14}$, which is 10 times better than MEG.
- All the detectors are upgraded to cope with increased background. Resolutions are expected to improve by factor of 2.
- Detector construction is completed except for readout electronics. Commissioning runs with μ beam will continue in 2019-2020, followed by physics run (~3 years).

Backup slides