

Rare decays in CMS

Sara Fiorendi (CERN) on behalf of the CMS Collaboration

EPS-HEP 2019
July 10-17
Ghent, Belgium

Why rare decays?

Complementary approach to direct New Physics searches

- Processes through loop diagrams or CKM suppressed in the Standard Model
 - typical branching ratios < 10-6
- Impact of New Physics could be easier to spot
 - search for virtual contributions of new heavy particles
 - could impact branching ratios or angular distribution
- Allow to reach sensitivity to higher mass scales than direct searches
- Clean experimental and theoretical probes, precise SM predictions available

Outline

•	Angular ar	nalysis	of the B	8+→K+µµ	decay
---	------------	---------	----------	---------	-------

Phys. Rev. D 98 (2018) 112011

• Search for $\tau \rightarrow 3\mu$ decays

CMS-PAS-BPH-17-004

• Prospects for selected rare decays measurements in CMS at the HL-LHC

CERN-LPCC-2018-06

B+→K+µµ decay: overview

- The decay B+→K+µµ is a FCNC process of the type b → sℓℓ
 - forbidden at tree level in the SM (BR ~ 4.4 x 10⁻⁷)
- New heavy particles from NP can appear in competing diagrams, affecting the differential angular distributions
- Previously studied by BABAR, Belle, CDF, and LHCb
 - no hints of beyond SM physics

- events selected by a displaced dimuon trigger
- cut-based selection determined to optimise signal significance
- 2286 ± 73 signal events with 1 < q² < 22 GeV²

 H^{-}

Angular analysis of the B+→K+µµ decay

• Decay rate is completely described as a function of the two variables q^2 and $\cos\theta_\ell$

$$\frac{1}{\Gamma_{\ell}} \frac{d\Gamma_{\ell}}{d\cos\frac{\theta_{\ell}}{\ell}} = \frac{3}{4} (1 - F_{H})(1 - \cos^{2}\frac{\theta_{\ell}}{\ell}) + \frac{1}{2} F_{H} + A_{FB}\cos\frac{\theta_{\ell}}{\ell}$$

 θ_{ℓ} : angle between the μ -and the K+in the dimuon rest frame

AFB: forward-backward asymmetry of the dimuon system

F_H: contribution from the (pseudo)scalar and tensor amplitudes to the decay width

- Theoretical predictions are available for both parameters; in the SM
 - A_{FB} is expected to be zero (up to small corrections)
 - F_H is also small

Parameter extraction

- A_{FB} and F_H are extracted from a 2D extended unbinned maximum-likelihood fit to the angular distribution of the selected B⁺ meson candidates, in various q² intervals
 - PDF built on angular decay rate and efficiency parametrisation (obtained from simulation)

- Total systematic uncertainty driven by uncertainties in
 - background distribution
 - fitting procedure
 - efficiency description

Systematic uncertainty	$A_{\rm FB}~(\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$
Finite size of MC samples	0.4–1.8	0.9–5.0
Efficiency description	0.1 - 1.5	0.1 - 7.8
Simulation mismodeling	0.1 - 2.8	0.1 - 1.4
Background parametrization model	0.1 - 1.0	0.1 - 5.1
Angular resolution	0.1 - 1.7	0.1 - 3.3
Dimuon mass resolution	0.1 - 1.0	0.1 - 1.5
Fitting procedure	0.1 - 3.2	0.4 - 25
Background distribution	0.1 - 7.2	0.1 - 29
Total systematic uncertainty	1.6–7.5	4.4–39

Results

Phys. Rev. D 98 (2018) 112011

The measured values of AFB are consistent with the SM expectation of no asymmetry

Generally good agreement between F_{H} results and theoretical predictions, as well as with previous measurements

Search for T→3µ decays

- Charged lepton flavour violating (CLFV) decay of τ to 3 muons, with no missing neutrinos
 - in the SM, allowed by neutrino oscillations, but branching fractions beyond current experimental accessibility (BF $\sim 10^{-14}$)
- The rate can be strongly enhanced in New Physics scenarios
- Experimentally the three-muon final state is accessible and clean
- Searches have been performed by Belle, BaBar, LHCb, ATLAS
 - no hint of signal yet
- Best limit from Belle: < 2.1×10⁻⁸ (@ 90% CL)

CMS has performed a search with 2016 data (33 fb⁻¹) using τ leptons produced in D and B hadron decays

CMS-PAS-BPH-17-004

Search strategy

- Select a τ (trimuon) candidate
 - trigger demands 2 muons plus a track, fitting to a common vertex
 - 3 offline muons with \sum charge = ±1.
- A BDT is trained to separate signal from background
 - inputs related to goodness of muon reconstruction and to the 3µ candidate properties
 - background inferred from data sidebands
- Selected events are divided in categories based on:
 - m(3μ) resolution, which depends on muon rapidity → 3 categories
 - in turn, each is split into 3 categories based on BDT score
 - only the two subcategories with highest S/B ratio are retained
- Resulting in 6 categories which will be included in the fit

Results

D_s → φπ⁺ → μμπ⁺ events are used for normalisation

$$N_{sig} = N_{D_s} \frac{\mathcal{B}(D_s \to \tau \nu)}{\mathcal{B}(D_s \to \phi \pi)} \frac{\epsilon_{sig}}{\epsilon_{\phi \pi}} \mathcal{B}(\tau \to 3\mu)$$

- same trigger and very similar momentum spectra
- fraction of (non-)prompt D_s estimated from a fit to the proper decay length distribution

- Limit is finally extracted through a simultaneous maximum likelihood fit to the 6 categories
- Dominant systematic uncertainties:
 - D_s normalization (10%)
 - $D_s \rightarrow \Phi \pi$ branching fraction (8%)

No excess found

Observed (expected) limits at 90% CL: $B(\tau \rightarrow 3\mu) < 8.8(9.9) \times 10^{-8}$

Prospects @HL-LHC

- The prospects at HL-LHC for experimental sensitivities of selected measurements in rare decay processes have been studied, assuming 3000 fb⁻¹ recorded
- However, harsh operating conditions will make it difficult to exploit this potential:
 - expected average pileup of 200, with resulting increase of particle density
 - radiation damage to the detector
- B-physics is among the physics topics that might suffer more from the HL-LHC conditions
 - relative low momenta of the typical signatures
 - high precision required by the measurements

- On the other hand, the Phase-II upgrades of the CMS detector promise to recover a good detection ability and even give better performances than those of the current detector
 - Lifetime of detectors
 - Increased readout bandwidth
 - PU mitigation

- → replace inner tracker & forward calorimeter
- → replacing electronics
- → higher detector granularity to reduce occupancy
- → improved trigger capabilities
- precision timing

B_(s) →µµ: current status

- B_(s)→ μμ decays only proceed via FCNC processes forbidden at tree level
 - highly suppressed in SM but enhancements/further suppressions of the BRs predicted in several SM extensions
- Current experimental results all in agreement with the SM, though statistically limited

	 (Β _s →μμ)	<i>%</i> (В⁰→µµ)	
SM	(3.66± 0.23) x 10 ⁻⁹	(1.06± 0.09) x 10 ⁻¹⁰	
Run I (CMS)	$(3.0^{+1.0}_{-0.9}) \times 10^{-9}$	< 1.1 x 10 ⁻⁹ @95% CL	PRL 111 (2013) 101804
Run I (CMS+LHCb)	$(2.8^{+0.7}_{-0.6}) \times 10^{-9}$	(3.9 ^{+1.6} _{-1.4}) x 10 ⁻¹⁰	Nature 522 (2015) 68
Run I + 2015/16 (ATLAS)	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	< 2.1 x 10 ⁻¹⁰ @95% CL	JHEP 1904 (2019) 098
Run I + Run II (LHCb)	$(3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$	< 3.4 x 10 ⁻¹⁰ @95% CL	Phys.Rev.Lett. 118 (2017)

• The high statistics available at the HL-LHC will allow to perform precise measurements of the BRs and of the effective lifetime of the $B_s \rightarrow \mu\mu$ decay

Perspectives for B_(s) →µµ

- Starting point for the projections is CMS Run-2 analysis (not public yet)
- Sensitivity to the effective lifetime and BRs measurements is evaluated on pseudoexperiments based on the Run-2 PDF for the signal and background components
- Improvements in the invariant mass reconstruction of the dimuon system from the new tracking system are included
 - in the barrel region improvement of ~40-50% wrt Run-2 scenario
 - it will result in a substantial reduction of semileptonic background contribution into the signal regions and improved separation of the B_s° and B°

B_(s) →µµ projections: results

- BRs extracted via unbinned maximum likelihood fit to the dimuon invariant mass distribution in bins of the BDT discriminant variable
- Lifetime measured through binned ML fit to sPlot produced with mass fit likelihood

Perspectives for P₅' in the B⁰→K*µµ decay

- Angular analysis of the FCNC B⁰→K*µµ decay gives access to NP-sensitive observables
 - deviation from SM expectation observed by LHCb and Belle in the P₅' parameter
 - consistency with SM from CMS Run-1 measurement (stat. limited)
- The expected precision on the P₅' parameter is extrapolated to the int. lumi of 3000 fb⁻¹, starting from CMS Run-1 results
 - no improvements in the analysis strategy or in the trigger performance are considered
 - same signal-to-background ratio is assumed for the projections
 - visible improvements in the mass resolution thanks to the upgraded tracker

Perspectives for P₅': results

- For each q² bin, expected yields obtained from events simulated with Phase-2 scenario and 200 pileup, and scaled to the luminosity of 3000 fb-1
 - ~700k signal events expected over the full q² range
- Statistical uncertainty obtained by scaling the Run-1 stat. uncertainty to the expected number
 of signal events
- Systematic uncertainties scaled by a factor 2 or according to the increase of statistics of the control samples

- Uncertainties are estimated to improve up to a factor of 15 compared to the Run-1 result
- The large available statistics will allow to to use a finer q² binning

Summary

- The **angular analysis of the B**+ \rightarrow K+ $\mu\mu$ decay has allowed to measure the angular observables A_{FB} and F_H which are consistent with the SM predictions
- A search for the $\tau \rightarrow 3\mu$ decay using a sample of τ 's from D and B meson has been performed
 - no excess is observed
 - upper limit on B(τ→3μ) is set at 8.9 x 10⁻⁸ @90% CL
- Prospects for measurements of selected rare decays process in the HL-LHC scenario have been presented
 - the observation of $B^0 \rightarrow \mu^+ \mu^-$ in excess of 5σ is possible with 3000 fb⁻¹
 - CMS will have the capability to measure the B_s →µµ effective lifetime with an uncertainty of ~0.05 ps
 - the uncertainties on P₅' in the B⁰→K*μμ decay are estimated to improve up to a factor of 15 compared to the Run-1 result

backup

Angular analysis of the B+→K+µµ decay

q^2 (GeV ²)	$\gamma_{\rm S}$	$A_{ m FB}$	$F_{ m H}$	$F_{\rm H}({\rm EOS})$	$F_{\rm H}({ m DHMV})$	$F_{\rm H}({ m FLAVIO})$	
1.00-2.00	169 ± 22	$0.08^{+0.22}_{-0.19}\pm0.05$	$0.21^{+0.29}_{-0.21}\pm0.39$	0.047	0.046	0.045	
2.00-4.30	331 ± 32	$-0.04~^{+0.12}_{-0.12}\pm0.07$	$0.85^{+0.34}_{-0.31}\pm0.14$	0.024	0.023	0.022	Phy
4.30-8.68	785 ± 42	$0.00~^{+0.04}_{-0.04}\pm0.02$	$0.01~^{+0.02}_{-0.01}\pm0.04$	_	0.012	0.011	Phys. Rev. D
10.09-12.86	365 ± 29	$0.00~^{+0.05}_{-0.05}\pm0.05$	$0.01~^{+0.02}_{-0.01}\pm0.06$	_		_	
14.18–16.00	215 ± 19	$0.01~^{+0.06}_{-0.05}\pm0.02$	$0.03^{+0.03}_{-0.03}\pm0.07$	0.007	0.007	0.006	98 (2018)
16.00-18.00	262 ± 21	$0.04~^{+0.05}_{-0.04}\pm0.03$	$0.07^{+0.06}_{-0.07}\pm0.07$	0.007	0.007	0.006	018) 1
18.00-22.00	226 ± 20	$0.05~^{+0.05}_{-0.04}\pm0.02$	$0.10^{~+0.06}_{~-0.10}\pm0.09$	0.008	0.009	0.008	112011
1.00-6.00	778 ± 47	$-0.14~^{+0.07}_{-0.06}\pm0.03$	$0.38 {}^{+0.17}_{-0.21} \pm 0.09$	0.025	0.025	0.020	
1.00-22.00	2286 ± 73	$0.00^{+0.02}_{-0.02}\pm0.03$	$0.01~^{+0.01}_{-0.01}\pm0.06$	<u> </u>	<u>—</u>		

B_(s) →µµ projections

• Systematic uncertainties

Source	Input uncertainties	$\delta \mathcal{B}(B_s^0 o \mu^+\mu^-)$	$\delta \mathcal{B}(B^0 o \mu^+ \mu^-)$	
Muon ID efficiency ratio	1%	1%	1%	
B^+ normalization yield	1.4%	1.4%	1.4%	
f_u/f_s ratio	3.5%	3.5%	-	
Effective lifetime	2%	2%	-	
Trigger efficiency	1.5%	1.5%	1.5%	
Other sources	3%	3%	3%	
Peaking background yield	10%	0.5%	2.7%	
Semileptonic background yield	7.5%	0.3 /0	∠. / /0	

CMS Phase II upgrades overview

Tracker upgrade

· Needed to deal with radiation damage and cope with higher pileup

Inner tracker:

- pixel sensors
- narrower pitch than present pixel detector
- increased granularity to limit the occupancy
- coverage up to |η|~4

Outer tracker:

- design driven by addition of hardware track trigger capabilities
- pixel-strip & 2-strip sensors
- progressively tilted modules
- Substantial reduction of the material budget with respect to present detector

Tracker performance: resolution

CMS-TDR-014

- Significant improvements in transverse momentum and transverse impact parameter resolution with respect to current detector
 - thanks to better hit resolution and lower material budget