



# Precision predictions for ${\rm B}\to\rho\tau\nu$ and ${\rm B}\to\omega\tau\nu$ in the SM and beyond

EPS 2019 - Flavour Physics and CP Violation

Florian Bernlochner, Markus Prim, Dean Robinson | 12th July 2019

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

#### **Form Factors**



• Form factors encode the structure of matrix elements in terms of representations.



### Form Factors - BCL Parametrization



The Bourrely-Caprini-Lellouch (BCL) parametrization is a model-independent ansatz for the form factors based on a fast converging series expansion of:

$$egin{aligned} & z(q^2,t_0) = rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \ & ext{with} \quad t_+ = (m_{ extsf{B}} + m_{ extsf{M}})^2 \ & t_0 = (m_{ extsf{B}} + m_{ extsf{M}})(\sqrt{m_{ extsf{B}}} - \sqrt{m_{ extsf{M}}}) \end{aligned}$$

2

The form factors are expanded as:

$$F_i(q^2) = P_i(q^2) \sum_k \alpha_k^i \left( z(q^2) - z(0) \right)^k$$
  
with  $P_i(q^2) = (1 - q^2/m_R^2)^{-1}$   $m_R$ : Mass of first resonance in spectrum



- In total exist 8 independent form factors:  $A_P$ , V,  $A_0$ ,  $A_1$ ,  $A_{12}$ ,  $T_1$ ,  $T_2$ ,  $T_{23}$ .
- The pseudoscalar form factor can be removed under the equations of motion:

$$A_P = -2rac{m_M}{m_{
m b}+m_{
m u}}A_0\,.$$

- 4 form factors contribute to the SM process: *V*, *A*<sub>0</sub>, *A*<sub>1</sub>, *A*<sub>12</sub>.
- 3 form factors can contribute to BSM processes:  $T_1$ ,  $T_2$ ,  $T_{23}$ .

#### Form Factors - B ightarrow V $\ell u$ with V = $ho,\omega$ from Theory



- Theory predictions available from LCSR calculations:
  - JHEP 1608 (2016) 098
- Only valid up to  $q^2 \approx 14 \, {\rm GeV}^2$ .
- For  $q^2 > 14 \, {\rm GeV}^2$  solely extrapolation available (no LQCD).



#### **Differential Rate - Help from Experiment**



- Fit form factor coefficients with theory and experimental input:
  - Phys.Rev. D88 (2013) no.3, 032005
  - Phys.Rev. D83 (2011) 032007
  - Phys.Rev. D87 (2013) no.3, 032004
- Use normalized spectra to take  $V_{\rm ub}$  out of the equation.



#### **Differential Rate - Fit Result**







Differential rate corrections are extracted from experimental data.

#### Form Factor - Fit Result B $ightarrow ho \ell u$





Form factor corrections are extracted from experimental data.

#### Form Factor - Fit Result B $ightarrow \omega \ell u$





Form factor corrections are extracted from experimental data.



- Only small improvement in the individual uncertainties of the form factors.
- But the fit allows to constrain combinations of form factors.
- This improves the precision on certain observables, e.g.  $R(\rho)$  and  $R(\omega)$ .



• Use fitted coefficients to predict R(V).

$$R(V) = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma(B \to V\tau\nu)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{0}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma(B \to V\ell\nu)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \frac{\mathrm{d}q^{2}}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \qquad \hat{R}(V) = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma(B \to V\ell\nu)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma(B \to V\ell\nu)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \mathrm{d}q^{2}}$$

$$\frac{R(V) \quad \text{LCSR} \quad \text{Fit} \quad \text{Improvement}}{R(\rho) \quad 0.532 \pm 0.011 \quad 0.535 \pm 0.008 \quad 25\%}{R(\omega) \quad 0.534 \pm 0.018 \quad 0.546 \pm 0.015 \quad 16\%}$$

$$\frac{\hat{R}(\rho) \quad 0.605 \pm 0.007 \quad 0.606 \pm 0.006 \quad 6\%}{\hat{R}(\omega) \quad 0.606 \pm 0.012 \quad 0.612 \pm 0.011 \quad 7\%}$$



12/16

The complete basis of the four-Fermi operators mediating the b  $ightarrow q\ell
u$  decay:

$$i2\sqrt{2}V_{\rm ub}G_{\rm F}\left[\bar{q}\chi_{j}^{i}\gamma^{\mu}P_{j}b\right]\left[\bar{\ell}\lambda_{l}^{k}\gamma_{\mu}P_{l}\nu\right]$$

- $\chi_l^i$ : NP coupling to quark current.
- $\lambda_l^k$ : NP coupling to lepton current.
- j, l = L, R: Helicity of b quark or  $\nu$  respectively.
- i, k = S, V, T: Type of current.
- NP couplings normalized to SM.
- Influence of new physics on  $R(\rho)$  and  $R(\omega)$  the same (both vector-like particles).













#### **Summary & Outlook**



- Form factors constrained from theory and experiment over whole  $q^2$  range.
- Improved predictions of  $\mathcal{O}(20\%)$  for  $R(\rho)$  and  $R(\omega)$
- Analysis of BSM physics influence on  $R(\rho)$  and  $R(\omega)$ .
- No measurements of  $R(\rho)$  and  $R(\omega)$  yet.
- Results also available via HAMMER:
  - http://hammer.physics.lbl.gov/
  - HAMMER: a tool for new physics searches in semileptonic decays at Belle II and LHCb by Stephan Duell (12 Jul 2019, 11:45)
- Measurement of the full differential decay rate allows data driven extraction of form factors in the future.

# Backup













 $\chi^2$ -Profiles of B  $ightarrow 
ho \ell 
u$  Fit





Precision predictions for  $B \rightarrow \rho \tau \nu$  and  $B \rightarrow \omega \tau \nu$  in the SM and beyond - Florian Bernlochner, <u>Markus Prim</u>, Dean Robinson

#### Correlations of B $ightarrow ho \ell u$



|                               | $B \rightarrow \rho (\rightarrow 2\pi) / \nu$ Prefit |                  |                  |     |                  |                     |                     |                  |                |     |                |                  |     |                             |                                | $B \rightarrow \rho (\rightarrow 2\pi)/\nu$ Postfit |                   |                       |                     |   |       |                             |                  |                |                |                  |                 |                     |                     |                     |     |     |                 |                 |                          |                     |                    |                  |                 |                 |                     |   |      |
|-------------------------------|------------------------------------------------------|------------------|------------------|-----|------------------|---------------------|---------------------|------------------|----------------|-----|----------------|------------------|-----|-----------------------------|--------------------------------|-----------------------------------------------------|-------------------|-----------------------|---------------------|---|-------|-----------------------------|------------------|----------------|----------------|------------------|-----------------|---------------------|---------------------|---------------------|-----|-----|-----------------|-----------------|--------------------------|---------------------|--------------------|------------------|-----------------|-----------------|---------------------|---|------|
| $\alpha_1^{A_0}$              | 100                                                  | -21              | -4               | 19  | 20               | 42                  | 88                  | 84               | -10            | 26  | 9              | -11              | 28  | 6                           | 20                             | 24                                                  | 34                | 88                    | 71                  |   | 100   | $\alpha_1^{A_0}$            | 100              | -14            | 7              | 13               | 19              | 29                  | 86                  | 81                  | -3  | 21  | 17              | -4              | 24                       | 13                  | 14                 | 26               | 24              | 86              | 73                  |   | 100  |
| $\alpha_2^{A_0}$              | -21                                                  | 100              | 8 (              | 8   | 26               | -14                 | -30                 | -24              | 3              | 1   | 59             | -12              | 1   | 57                          | 6                              | 43                                                  | -9                | -1                    | 37-                 |   | 1     | $\alpha_{2}^{A_{c}}$        | -14              | 100            | 2              | 15               | 28              | -6                  | -23                 | -19                 | -1  | 7   | 57              | -16             | 7                        | 55                  | 12                 | 44               | -3              | 8               | 40                  | 1 |      |
| $\alpha_{0}^{\hat{A}_{1}}$    | -4                                                   | 8                | 100              | 46  | 43               | 15                  | -12                 | -22              | 90             | 46  | -23            | 88               | 46  | -27                         | 45                             | 37                                                  | 15                | 8                     | 6-                  | . | 75    | $\alpha^{\hat{A}_1}$        | 7                | 2              | 100            | 56               | 46              | 30                  | 2                   | -15                 | 90  | 54  | -30             | 88              | 55                       | -33                 | 55                 | 38               | 24              | 20              | 9                   | - | 75   |
| $\alpha_1^{A_1}$              | -19                                                  | 8                | 46               | 100 | 86               | -5                  | 16                  | 1                | 42             | 95  | -29            | 39               | 95  | -32                         | 99                             | 76                                                  | -1                | 28                    | 18                  |   | -     | $\alpha_1^{A_1}$            | -13              | 15             | 56             | 100              | 87              | -14                 | 6                   | -5                  | 49  | 95  | -23             | 45              | 94                       | -27                 | 98                 | 79               | -7              | 23              | 18                  | - |      |
| $\alpha_2^{\hat{A}_1}$        | -20                                                  | 26               | 43               | 86  | 100              | -9                  | 12                  | 9                | 36             | 86  | 1              | 30               | 86  | -4                          | 85                             | 94                                                  | -3                | 27                    | 32-                 |   | 50    | $\alpha_2^{\hat{A}_1}$      | 19               | 28             | 46             | 87               | 100             | -12                 | 11                  | 8                   | 37  | 88  | 2               | 31              | 88                       | -3                  | 87                 | 94               | -5              | 27              | 32-                 | 1 | 50   |
| $\alpha_0^{\tilde{A_{12}}}$   | 42                                                   | -14              | 15               | -5  | -9               | 100                 | 56                  | 38               | 16             | -7  | -1             | 15               | -7  | 1                           | -5                             | -13                                                 | 72                | 43                    | 17-                 |   |       | $\alpha_0^{\tilde{A_{12}}}$ | -29              | -6             | 30             | -14              | -12             | 100                 | 42                  | 25                  | 29  | -16 | 6               | 28              | -16                      | 8                   | -14                | -14              | 69              | 31              | 12                  |   |      |
| $\alpha_1^{\tilde{A}_{12}}$   | -88                                                  | -30              | -12              | 16  | 12               | 56                  | 100                 | 89               | -15            | 24  | -13            | -11              | 26  | -14                         | 18                             | 8                                                   | 35                | 83                    | 56                  |   | 1.05  | $\alpha_1^{A_{12}}$         | 86               | -23            | 2              | 6                | 11              | 42                  | 100                 | 89                  | -5  | 18  | -4              | -2              | 20                       | -8                  | 8                  | 11               | 23              | 80              | 60                  | - | 25   |
| $\alpha_{2}^{\tilde{A}_{12}}$ | -84                                                  | -24              | -22              | 1   | 9                | 38                  | 89                  | 100              | -28            | 12  | -0             | -24              | 15  | -4                          | 4                              | 9                                                   | 17                | 65                    | 58                  | 1 | 25    | $\alpha_2^{\tilde{A}_{12}}$ | 81               | -19            | -15            | -5               | 8               | 25                  | 89                  | 100                 | -23 | 8   | 4               | -19             | 10                       | 0                   | -2                 | 10               | 6               | 59              | 57                  | - | 25   |
| $\bar{\alpha}_0^{\nu}$        | -10                                                  | 3                | 90               | 42  | 36               | 16                  | -15                 | -28              | 100            | 48  | -32            | 90               | 43  | -30                         | 43                             | 31                                                  | 16                | 3                     | -3-                 |   | :     | $\bar{\alpha}_0^{\nu}$      | 3                | -1             | 90             | 49               | 37              | 29                  | -5                  | -23                 | 100 | 54  | -37             | 90              | 49                       | -34                 | 50                 | 31               | 23              | 12              | 0                   | 1 |      |
| $\alpha_1^{v}$                | -26                                                  | 1                | 46               | 95  | 86               | -7                  | 24                  | 12               | 48             | 100 | 0 -37          | 42               | 97  | -39                         | 97                             | 77                                                  | •6                | 32                    | 22-                 |   | 0     | $\alpha_1^{v}$              | 21               | 7              | 54             | 95               | 88              | -16                 | 18                  | 8                   | 54  | 100 | -33             | 48              | 97                       | -35                 | 96                 | 80               | 12              | 28              | 22                  | - | 0    |
| $\alpha_2^{\nu}$              | - 9                                                  | 59               | -23              | -29 | 1                | -1                  | -13                 | -0               | -32            | -37 | 7 100          | .42              | -35 | 96                          | -33                            | 22                                                  | 10                | 16                    | 50                  |   | -     | $\alpha_2^{\nu}$            | 17               | 57             | -30            | -23              | 2               | 6                   | -4                  | 4                   | -37 | -33 | 100             | -47             | -31                      | 96                  | -28                | 22               | 16              | 25              | 53                  | - |      |
| $\alpha_1^{T_1}$              | -11                                                  | -12              | 88               | 39  | 30               | 15                  | -11                 | -24              | 90             | 42  | -42            | 10               | 46  | -48                         | 44                             | 23                                                  | 14                | -1                    | -12                 |   | -25   | $\alpha_1^{T_1}$            | 4                | -16            | 88             | 45               | 31              | 28                  | -2                  | -19                 | 90  | 48  | -47             | 100             | 51                       | -52                 | 50                 | 23               | 20              | 7               | -10                 | 1 | -25  |
| $\alpha_2^{T_1}$              | -28                                                  | 1                | 46               | 95  | 86               | -7                  | 26                  | 15               | 43             | 97  | -35            | 46               | 100 | -42                         | 98                             | 79                                                  | -5                | 34                    | 24                  |   |       | $\alpha_2^{T_1}$            | -24              | 7              | 55             | 94               | 88              | -16                 | 20                  | 10                  | 49  | 97  | -31             | 51              | 100                      | -38                 | 98                 | 82               | 10              | 30              | 24                  | 1 |      |
| $\alpha_0^{T_2}$              | -6                                                   | 57               | -27              | -32 | -4               | 1                   | -14                 | -4               | -30            | -39 | 9 96           | -48              | -42 | 100                         | -38                            | 15                                                  | 12                | 13                    | 46                  |   |       | $\alpha_0^{T_2}$            | 13               | 55             | -33            | -27              | -3              | 8                   | -8                  | 0                   | -34 | -35 | 96              | -52             | -38                      | 100                 | -34                | 15               | 17              | 21              | 48                  | • | 50   |
| $\alpha_1^{T_2}$              | -20                                                  | 6                | 45               | 99  | 85               | -5                  | 18                  | 4                | 43             | 97  | -33            | 44               | 98  | -38                         | 100                            | 77                                                  | -2                | 28                    | 17-                 |   | -50   | $\alpha_1^{T_2}$            | 14               | 12             | 55             | 98               | 87              | -14                 | 8                   | -2                  | 50  | 96  | -28             | 50              | 98                       | -34                 | 100                | 81               | -8              | 22              | 17-                 | 1 | -50  |
| $\alpha_2^{T_2}$              | -24                                                  | 43               | 37               | 76  | 94               | -13                 | 8                   | 9                | 31             | 77  | 22             | 23               | 79  | 15                          | 77                             | 100                                                 | -4                | 33                    | 49                  |   | :     | $\alpha_2^{T_2}$            | -26              | 44             | 38             | 79               | 94              | -14                 | 11                  | 10                  | 31  | 80  | 22              | 23              | 82                       | 15                  | 81                 | L00              | -4              | 36              | 49                  | 1 |      |
| $\alpha_0^{1_{23}}$           | -34                                                  | -9               | 15               | -1  | -3               | 72                  | 35                  | 17               | 16             | -6  | 10             | 14               | -5  | 12                          | -2                             | -4                                                  | 100               | 39                    | 14                  |   | -75   | $\alpha_{0}^{T_{23}}$       | -24              | -3             | 24             | -7               | -5              | 69                  | 23                  | 6                   | 23  | -12 | 16              | 20              | -10                      | 17                  | -8                 | -4               | 100             | 31              | 10-                 | - | -75  |
| $\alpha_{1}^{T_{23}}$         | -88                                                  | -1               | 8                | 28  | 27               | 43                  | 83                  | 65               | 3              | 32  | 16             | -1               | 34  | 13                          | 28                             | 33                                                  | 39                | 100                   | 83-                 |   | 1     | $\alpha_{1}^{T_{23}}$       | -86              | 8              | 20             | 23               | 27              | 31                  | 80                  | 59                  | 12  | 28  | 25              | 7               | 30                       | 21                  | 22                 | 36               | 31 1            | 100             | 86-                 | 1 |      |
| $\alpha_{2}^{T_{23}}$         | 71                                                   | 37               | 6                | 18  | 32               | 17                  | 56                  | 58               | -3             | 22  | 50             | -12              | 24  | 46                          | 17                             | 49                                                  | 14                | 83                    | 100                 |   | 1-100 | $\alpha_{2}^{T_{23}}$       | 73               | 40             | 9              | 18               | 32              | 12                  | 60                  | 57                  | 0   | 22  | 53              | -10             | 24                       | 48                  | 17                 | 49<br>           | 10              | 86              | 109                 | - | -100 |
|                               | $\alpha_1^{A_0}$                                     | a <sup>A</sup> o | a <sup>Å</sup> i | ahi | a <sup>A</sup> 1 | $\alpha_0^{A_{12}}$ | $\alpha_1^{A_{12}}$ | α <sup>412</sup> | م <sup>ر</sup> | a', | a <sup>2</sup> | $\alpha_{1}^{+}$ | άţ  | a <sup>1</sup> <sub>2</sub> | $\alpha_{1_{2}}^{\dagger_{2}}$ | $\alpha_{1}^{\frac{1}{2}}$                          | α <sup>1</sup> 23 | $\alpha_{1}^{T_{23}}$ | $\alpha_2^{T_{23}}$ |   |       |                             | $\alpha_1^{A_0}$ | α <sup>Å</sup> | a <sup>A</sup> | a <sup>A</sup> 1 | a <sup>A1</sup> | $\alpha_0^{A_{12}}$ | $\alpha_1^{A_{12}}$ | $\alpha_2^{A_{12}}$ | 20< | a'  | 2 <sup>22</sup> | $\alpha_1^{-1}$ | $\alpha_{2^{+}}^{2^{+}}$ | $\alpha_{0,2}^{-2}$ | $\alpha_{1,2}^{2}$ | $\alpha_{2}^{2}$ | a <sup>12</sup> | $\alpha_1^{12}$ | $\alpha_2^{1_{23}}$ |   |      |

Precision predictions for B  $\rightarrow \rho \tau \nu$  and B  $\rightarrow \omega \tau \nu$  in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019 22/16

 $\chi^2$ -Profiles of B  $ightarrow \omega \ell 
u$  Fit





Precision predictions for B  $\rightarrow \rho \tau \nu$  and B  $\rightarrow \omega \tau \nu$  in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson

#### Correlations of B $ightarrow \omega \ell u$



24/16



Precision predictions for B  $\rightarrow \rho \tau \nu$  and B  $\rightarrow \omega \tau \nu$  in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019