Precision predictions for $B \to \rho \tau \nu$ and $B \to \omega \tau \nu$
in the SM and beyond

EPS 2019 - Flavour Physics and CP Violation
Florian Bernlochner, Markus Prim, Dean Robinson | 12th July 2019
Form Factors

- **Form factors** encode the structure of matrix elements in terms of representations.

\[
\propto \left\langle M(p_M) \middle| u \gamma^{\mu} P_L b \middle| B(p_B) \right\rangle
\]

\[
\propto \sum T_i^\mu F_i(q^2)
\]
Form Factors - BCL Parametrization

The Bourrely-Caprini-Lellouch (BCL) parametrization is a model-independent ansatz for the form factors based on a fast converging series expansion of:

\[z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \]

with

\[t_+ = (m_B + m_M)^2 \]
\[t_0 = (m_B + m_M)(\sqrt{m_B} - \sqrt{m_M})^2 \]

The form factors are expanded as:

\[F_i(q^2) = P_i(q^2) \sum_k \alpha_k^i \left(z(q^2) - z(0) \right)^k \]

with

\[P_i(q^2) = \left(1 - \frac{q^2}{m_R^2} \right)^{-1} \quad m_R : \text{Mass of first resonance in spectrum} \]
Form Factors - $B \rightarrow V \ell \nu$ with $V = \rho, \omega$

- In total exist 8 independent form factors: $A_P, V, A_0, A_1, A_{12}, T_1, T_2, T_{23}$.
- The pseudoscalar form factor can be removed under the equations of motion:

$$A_P = -2 \frac{m_M}{m_b + m_u} A_0.$$

- 4 form factors contribute to the SM process: V, A_0, A_1, A_{12}.
- 3 form factors can contribute to BSM processes: T_1, T_2, T_{23}.
Form Factors - $B \to V \ell \nu$ with $V = \rho, \omega$ from Theory

- Theory predictions available from LCSR calculations:
 - JHEP 1608 (2016) 098
- Only valid up to $q^2 \approx 14 \text{ GeV}^2$.
- For $q^2 > 14 \text{ GeV}^2$ solely extrapolation available (no LQCD).
Differential Rate - Help from Experiment

- Fit form factor coefficients with theory and experimental input:
 - Phys.Rev. D83 (2011) 032007
 - Phys.Rev. D87 (2013) no.3, 032004

- Use normalized spectra to take V_{ub} out of the equation.
Differential Rate - Fit Result

\[\chi^2(\bar{a}) = \chi^2_{\text{LCSR}}(\bar{a}) + \sum_{\text{Exp}} \chi^2_{\text{Exp}}(\bar{a}) \]

Differential rate corrections are extracted from experimental data.

Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Form factor corrections are extracted from experimental data.
Form factor corrections are extracted from experimental data.
Form Factor - Fit Result

- Only small improvement in the individual uncertainties of the form factors.
- But the fit allows to **constrain combinations of form factors**.
- This improves the precision on certain observables, e.g. $R(\rho)$ and $R(\omega)$.
Predicting $R(\rho)$ and $R(\omega)$ in the SM

- Use fitted coefficients to predict $R(V)$.

\[
R(V) = \frac{\int q_{\text{max}}^2 \frac{d\Gamma(B \rightarrow V\tau\nu)}{dq^2}}{\int q_{\text{max}}^2 \frac{d\Gamma(B \rightarrow V\ell\nu)}{dq^2}} dq^2
\]

\[
\hat{R}(V) = \frac{\int q_{\text{max}}^2 \frac{d\Gamma(B \rightarrow V\tau\nu)}{dq^2}}{\int q_{\text{max}}^2 \frac{d\Gamma(B \rightarrow V\ell\nu)}{dq^2}} dq^2
\]

<table>
<thead>
<tr>
<th>$R(V)$</th>
<th>LCSR</th>
<th>Fit</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(\rho)$</td>
<td>0.532 ± 0.011</td>
<td>0.535 ± 0.008</td>
<td>25 %</td>
</tr>
<tr>
<td>$R(\omega)$</td>
<td>0.534 ± 0.018</td>
<td>0.546 ± 0.015</td>
<td>16 %</td>
</tr>
<tr>
<td>$\hat{R}(\rho)$</td>
<td>0.605 ± 0.007</td>
<td>0.606 ± 0.006</td>
<td>6 %</td>
</tr>
<tr>
<td>$\hat{R}(\omega)$</td>
<td>0.606 ± 0.012</td>
<td>0.612 ± 0.011</td>
<td>7 %</td>
</tr>
</tbody>
</table>
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

The complete basis of the four-Fermi operators mediating the $b \rightarrow q\ell\nu$ decay:

$$i2\sqrt{2} V_{ub} G_F [\bar{q} \chi^i_j \gamma^\mu P_j b][\bar{\ell} \lambda^k_i \gamma^\mu P_l \nu]$$

- χ^i_j: NP coupling to quark current.
- λ^k_i: NP coupling to lepton current.
- $j, l = L, R$: Helicity of b quark or ν respectively.
- $i, k = S, V, T$: Type of current.
- NP couplings normalized to SM.
- Influence of new physics on $R(\rho)$ and $R(\omega)$ the same (both vector-like particles).
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

Scalar Currents

Precision predictions for $B \to \rho \tau \nu$ and $B \to \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

Vector Currents

Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

Tensor Currents

Precision predictions for $B \to \rho \tau \nu$ and $B \to \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Summary & Outlook

- Form factors constrained from theory and experiment over whole q^2 range.
- Improved predictions of $\mathcal{O}(20\%)$ for $R(\rho)$ and $R(\omega)$
- Analysis of BSM physics influence on $R(\rho)$ and $R(\omega)$.
- No measurements of $R(\rho)$ and $R(\omega)$ yet.

- Results also available via HAMMER:
 - HAMMER: a tool for new physics searches in semileptonic decays at Belle II and LHCb by Stephan Duell (12 Jul 2019, 11:45)

- Measurement of the full differential decay rate allows data driven extraction of form factors in the future.
Backup
Predicting \(R(\rho) \) and \(R(\omega) \) beyond the SM

Scalar Currents

\[
R(\omega) = 0
\]

\[
\delta = 0
\]

\[
\chi_L^S \lambda_L^S, \chi_L^S \lambda_R^S, \chi_R^S \lambda_L^S, \chi_R^S \lambda_R^S
\]

Precision predictions for \(B \to \rho \tau \nu \) and \(B \to \omega \tau \nu \) in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019 18/16
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

Vector Currents

Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Predicting $R(\rho)$ and $R(\omega)$ beyond the SM

Tensor Currents

Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson 12th July 2019
Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson

12th July 2019

21/16
Correlations of $B \to \rho \ell \nu$

Precision predictions for $B \to \rho \tau \nu$ and $B \to \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson

12th July 2019 22/16
χ^2-Profiles of $B \rightarrow \omega \lnu$ Fit

- Precision predictions for $B \rightarrow \rho \lnu$ and $B \rightarrow \omega \lnu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson

12th July 2019

23/16
Correlations of $B \rightarrow \omega \nu$

$B \rightarrow \omega(\rightarrow 3\pi)\nu$ Prefit

<table>
<thead>
<tr>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
<th>A_8</th>
<th>A_9</th>
<th>A_{10}</th>
<th>A_{11}</th>
<th>A_{12}</th>
<th>A_{13}</th>
<th>A_{14}</th>
<th>A_{15}</th>
<th>A_{16}</th>
<th>A_{17}</th>
<th>A_{18}</th>
<th>A_{19}</th>
<th>A_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>ω</td>
<td>ν</td>
<td>τ</td>
<td>ν</td>
</tr>
</tbody>
</table>

$B \rightarrow \omega(\rightarrow 3\pi)\nu$ Postfit

<table>
<thead>
<tr>
<th>B_0</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
<th>B_9</th>
<th>B_{10}</th>
<th>B_{11}</th>
<th>B_{12}</th>
<th>B_{13}</th>
<th>B_{14}</th>
<th>B_{15}</th>
<th>B_{16}</th>
<th>B_{17}</th>
<th>B_{18}</th>
<th>B_{19}</th>
<th>B_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>ω</td>
<td>ν</td>
<td>τ</td>
<td>ν</td>
</tr>
</tbody>
</table>

Precision predictions for $B \rightarrow \rho \tau \nu$ and $B \rightarrow \omega \tau \nu$ in the SM and beyond - Florian Bernlochner, Markus Prim, Dean Robinson
12th July 2019
24/16