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MEASUREMENTS IN b — ¢7> SECTOR FIT RESULTS BEFORE MORIOND’19 FIT RESULTS AFTER MORIOND’19

Lepton Flavor Universality Violation: The flavor ratios In this global fit [8], we take all the data which were avail- After Moriond’19, the world averages of Rp-R7, are closer
mediated by b — c7v transitions are able before the recent Rp-Rp- results announced by Belle at to SM. The NP solutions allowed by the present data are
o The ratios Ry = D(B — D®7p)/T(B — D™ p), | |Moriond’1d.
(I = e, ,u).me.asured .by BaBar, Belle and LHCb experi- NP tYP e Best fit value(s) X2 |
ments [1] indicate evidence of lepton flavor non univer- NP tvpe Best fit value ( S) 2 main
sality. These results disagree with the Standard Model YP Xmin SM C ; = 0 21.80
(SM) prediction at 4.1¢0 level. SM Cz = 24.70 C 0.10 0.02 A5
V7, : T U. :
e In 2017, LHCb measured R;/, = TI'(B. — OVL 0.15 = 0.03 0.1 /!
n 20 ; = O —0.34+0.08 | 5.7
/Y1) /T(B. — J/¢Yur) and found it to differ from the ol 052 +0.10 59 L
SM prediction by about ~ 1.70 [2]. SL ' - ' ( g g ) (O 27 () 35) 4.3
. - VARV :
e Belle presented updated results on Rp-Rp+ at Moriond CVL ) CVR (O 177 005) 4.5 C C 0.14.0.25 A5
2019. Here, for the first time, they reconstructed the C/ / (O 19 _006) 49 ( VRrs S L) (_ y y e ) y
T lepton. These results are consistent with the SM [3]. Vi Vg ’ (_() 1 17 ()22) 3.9

SM reduces to 3.10 which is still significant.
(O : 14, 0. 09) 4.5 NOTE: 1. The 39, 4", 6*h and 7*" solutions, in previous table,
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(O 17, —0. 12) 4.5 ar/e S’Flﬂ viable. Hc?wever, the values of CYy,, CVI}’ Cg, and
Cg, in these solutions are close to zero. Also Oy, = Oy, .

(—O. 1 7, 042) 4.0 Hence these four solutions are now essentially equivalent to
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03 NOTE: The tensor solution [9, 10] which was allowed before violates" B(B, — 77), we have included it.
| the measurement of D* polarization fraction, is now ruled 3. We got a small tensor (C = —0.06) solution witha y2,, =
0.25 F Bleta. s —— \out at the level of 50 [8]. \8.() which is disfavored in view of goodness of fit.
Bellel7
0.2 + Average of SM predictions m i
| IE%BZ?:%?S%SZOZ?S&I T’PF;;Q)QZZS;;?, . METHODS TO DISCRIMINATE THE NP OPERATORS
- - > > R(D) Angular observables are the standard and powerful tools to discriminate between the NP operators [11].
. NP type PT(D*) fL(D*) AFB(D*) QQ[AFB(QZ) — O] GeV2 B(B — TV)
Angular observables: The following two angular observ- SM —0.499 +0.004 | 0.45+0.04 | —0.011 + 0.007 5.7 2.15 x 102
ables are measured in 5 — D" decay: Cy, —0.499 £ 0.004 | 0.46 £0.04 | —0.011 £ 0.007 5.7 250 x 10~ 2
e Belle collaboration has measured the CgL —0.493 =0.003 | 0.44 =0.05 —0.062 = 0.010 6.8 1.14 x 10~ °
T polarization fraction P, (D*) — o7 7 —>—
. —0.494 = 0.005 | 0.47 =0.04 0.027 = 0.008 5.0 7.93 X 10
(PAT:—|—1/2 — F/\T:—1/2) / (FAT:—H/Z T PAT:—l/Z) with ( Sp’ SR)
a very large -statistical error. This measurement is (CVR, CSL) —0.5260 = 0.004 | 0.45 = 0.04 —0.061 == 0.006 6.7 2.23 x 1079
consistent with its SM prediction [4]. (Cvy, Csp) | —0.468 £0.005 | 0.47 £0.04 | —0.023 £ 0.006 5.8 0.12

e Recently Belle has also measured the longi-
tudinal D* polarization fraction fr(D*) =
Cape=0/ Tape=0 +Tape=1 + T .=—1).  The mea-
sured value is ~ 1.60 higher than the SM prediction [5].

NOTE: Neither the 7 nor the D* polarization fraction has any capability to distinguish between
the allowed solutions listed above. The zero crossing point of the forward-backward asymmetry

Arp(¢®) and the branching ratio B(B. — 77) together can uniquely identify each NP operator.
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