Exclusion Limits on Neutral, Mono and Doubly Charged Vector Bosons at LHC

Andre Nepomuceno1, Bernhard Meirose2, Giovanni Marvila1, Matheus Vieira1

1Universidade Federal Fluminense
2University of Texas at Dallas

EPS-HEP 2019
Ghent, Belgium
Introduction

- Many SM extensions propose solutions to different problems.

- Models based on gauge structure $\text{SU(3)}_C \times \text{SU(2)}_L \times \text{U(1)}_X$, known as 3-3-1 models, have some appealing features:
 - ✓ provide an explanation for the family replication problem;
 - ✓ provide some indication of why the top quark is the heaviest one;
 - ✓ interesting new physics scenarios.

- There are five exotic gauge bosons in the model: one neutral (Z'_{331}) and four charged, called bileptons ($Y^{\pm\pm}$, V^\pm).

- The model also predicts a heavy leptoquark (Q).

Goal: Interpret different LHC searches in terms of 3-3-1 predictions.
Vector Bosons Production at LHC

- Resonant production of Z'_{331} and subsequent decay into two oppositely charged leptons

- Bileptons are produced in pairs through a Drell-Yan process intermediated by neutral gauge bosons, and via a t-channel with leptoquark exchange.
Bileptons Signature

Each doubly charged bilepton decay into a pair of same sign leptons. Mono charged bileptons decay into a lepton and a neutrino.

\[Y^{±±} \rightarrow e^± e^± \]
\[Y^{±±} \rightarrow μ^± μ^± \]
\[Y^{±±} \rightarrow e^± μ^± \]
\[V^± \rightarrow e^+ \bar{\nu}, e^- \nu \]
\[V^± \rightarrow μ^+ \bar{\nu}, μ^- \nu \]
\[V^± \rightarrow e^+ \bar{\nu}, μ^- \nu \]
\[V^± \rightarrow μ^+ \bar{\nu}, e^- \nu \]
Bileptons Signature

Each doubly charged bilepton decay into a pair of same sign leptons. Mono charged bileptons decay into a lepton and a neutrino.

- $Y^{±±} \rightarrow e^± e^±$
- $Y^{±±} \rightarrow µ^± µ^±$
- $Y^{±±} \rightarrow e^± µ^±$
- $V^± \rightarrow e^+ \bar{ν}, e^- ν$
- $V^± \rightarrow µ^+ \bar{ν}, µ^- ν$
- $V^± \rightarrow e^+ \bar{ν}, µ^- ν$
- $V^± \rightarrow µ^+ \bar{ν}, e^- ν$
Signal Simulation

- CalcHep + PYTHIA8 + DELPHES (pile-up included)
- $M_Q = 1.5$ TeV
- $M_Y < M_Q$

ATLAS published data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ at 13 TeV are used.

Limits on Z'

Event Selection

- At least one pair of same flavor lepton candidates (electrons or muons)
- In the muon channel, opposite charge candidates are required.
- $|\eta_\ell| < 2.5$, $p_T^\ell > 30$ GeV
Limits on Z'_331

To set limits, a Bayesian approach is applied with a flat prior probability distribution for $\sigma \times Br$. Upper limits on the cross-section are translated into lower limits on the vector bosons mass.

Observed Limit: 3.71 TeV
Expected Limit: (3.63 ± 0.16) TeV
Limits on $Y^{±±}$

Event Selection

- $|\eta_\ell| < 2.5, \ p_T^\ell > 30 \ GeV$
- b-jet veto
- Three leptons event ($\ell^\pm \ell^\pm \ell^\mp$)
 - ✔ Exactly one same-charge lepton pair
 - ✔ $\Delta R(\ell^\pm \ell^\pm) < 3.5$
 - ✔ $p_T(\ell^\pm \ell^\pm) > 100 \ GeV$
 - $\sum |p_T^\ell| > 300 \ GeV$
- Four leptons event ($\ell^\pm \ell^\pm \ell^\mp \ell^\mp$)
 - ✔ $\sum C^\ell = 0$
 - ✔ $\bar{M} = \frac{m^{++} + m^{--}}{2}$

[Graphs showing data and plots for different mass distributions]
Limits on $Y^{±±}$

Bileptons with masses between ~ 750 GeV and ~ 1200 GeV are excluded.

Previous limit @7 TeV: $M_γ > 520$ GeV (AAN, BM, PRD 94, 2016)
Limits on V^\pm

Event Selection

- $|\eta_\ell| < 2.5$, $p_T^\ell > 10$ GeV
- b-jet veto
- Two opposite-charge leptons
 - ✔ Same Flavor ($e^+e^-, \mu^+\mu^-$)
 - $m_{T2}^* > 100$ GeV
 - $m_{\ell\ell} > 111$ GeV
 - ✔ Different Flavor ($e^\pm\mu^\mp$)
 - $m_{T2} > 100$ GeV

m_{T2} is the transverse mass
Limits on V^\pm

First limits on mono-charged bileptons with LHC data.
Summary

- ATLAS searches with 36.1 fb^{-1} of data are interpreted in terms of 3-3-1 predictions.
- A Z'_{331} with mass below 3.7 TeV is excluded.
- Mono and doubly charged bileptons with masses up to ~ 850 GeV and ~ 1200 GeV, respectively, are excluded.
- These results represent the most stringent bounds on bileptons masses.
Back-up Slides
Stransverse Mass

\[m_{T2} = \min [\max (m_T(p_T^{\ell 1}, q_T), m_T(p_T^{\ell 2}, p_T^{\text{miss}} - q_T))] \]

\[m_T(p_T, q_T) = \sqrt{2(p_T q_T - p_T \cdot q_T)} \]

See https://www.hep.phy.cam.ac.uk/~lester/mt2/ for details.
Signal Validation

Z’ SSM

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>DELPHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs.</td>
<td>Exp.</td>
</tr>
<tr>
<td>ee (TeV)</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>μμ (TeV)</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>ll (TeV)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>