## Measurement of the *CP*-violating phase $\phi_s$ at LHCb

## Veronika Chobanova

on behalf of the LHCb collaboration

#### **EPS-HEP Conference 2019, Ghent**

11th July 2019





GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES





### Introduction to $\phi_s$

•  $\phi_s = -\arg(\lambda_f) - \text{mixing-induced CPV phase in } B_s^0$ decays such as  $B_s^0 \rightarrow J/\psi K^+ K^-$  and  $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ 



• Assuming only a SM tree contribution  $\phi_s^{SM} = -\arg(\lambda_f) = \frac{\phi_M^{SM}}{\rho_M^{SM}} - \frac{2\phi_D}{2} = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$ 



### Introduction to $\phi_s$

- Phase  $\phi_s$  sensitive to physics beyond the SM even at high energy scales that might be unaccessible in direct searches
- Physics BSM could enter in the  $\mathsf{B}^0_s\text{-}\overline{\mathsf{B}}^0_s$  mixing

$$\phi_s = -\arg(\lambda_f) = \frac{\phi_M}{\rho_M} - \frac{2\phi_D}{\rho_M} = -2\beta_s + \frac{\Delta\phi_{NP}}{\rho_M}$$







# $\phi_{\rm s} \text{ in } {\rm B}^0_{\rm s} ightarrow {\rm J}/\psi {\rm K} {\rm K} \text{ and } {\rm B}^0_{\rm s} ightarrow {\rm J}/\psi \pi^+\pi^-$

- Phase  $\phi_s \approx -2\beta_s$  measured most precisely in processes dominated by b  $\rightarrow c\bar{c}s$ , where (SM) penguin pollution is small
- Decays admixture of CP -even and CP -odd final states



#### Experimental requirements



#### **Time resolution**

 $\rm B_s^0$  oscillations fast,  $\rm {\it T} \approx 350\, fs!$  Need excellent time resolution,  $\sigma_t << \rm {\it T}$ 

#### Flavour tagging

Need to know initial  $\mathsf{B}^0_{\mathsf{s}}$  flavour, experimentally limited by the probability of mistag,  $\omega.$  Tagging power  $\varepsilon_{\mathrm{tag}} = \varepsilon (1-2\omega)^2$ 

#### **CP** eigenvalue

Using angular distribution of decay products, angles  $heta_{
m K}$ ,  $heta_{\mu}$  and arphi



Veronika Chobanova

#### LHCb experiment

Mixing-induced CPV access through time-dependent decay rates

- ✓ Excellent time resolution  $\langle \sigma_t \rangle \approx 42 - 45 \, \text{fs}$
- $\checkmark$  B<sup>0</sup><sub>s</sub> flavour tagging power  $\approx$  5%
- PID efficiencies > 95%

[See talk by Katharina Müller on Tue 9am]





#### Status of $\phi_s$ before Moriond 2019



- World average dominated by LHCb
- Results consistent with SM-based global fits to data, though plenty of room for new physics

#### LHCb Run 1

- $B_s^0 \rightarrow J/\psi K^+ K^-$ : M(KK) around  $\phi(1020)$ [PRL 114, 041801 (2015)]
  - M(KK) above  $\phi(1020)$ [JHEP 08 (2017) 037]
- $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [PLB 736 (2014) 186]
- $B_s^0 \to \psi(2S)\phi$ [PLB 762 (2016) 253]
- $B_s^0 \rightarrow D_s^+ D_s^-$ [PRL 113, 211801 (2014)]

#### ATLAS and CMS Run 1

•  $B_s^0 \rightarrow J/\psi K^+ K^-$  in  $\phi(1020)$  region [JHEP 1608 (2016) 147] [PLB 757 (2016) 97]

## NEW $B_s^0 \rightarrow J/\psi K^+ K^-$ [arXiv:1906.08356] and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [arXiv:1903.05530]

- Run 2 LHCb measurements with  $1.9 \,\text{fb}^{-1}$  from 2015 (0.3  $\text{fb}^{-1}$ ) and 2016 (1.6  $\text{fb}^{-1}$ )
- $B_s^0 \rightarrow J/\psi K^+ K^-$  in region around  $\phi(1020)$ , small S-wave contribution
- $B_s^0 \rightarrow J/\psi \pi^+\pi^-$  predominantly  $B_s^0 \rightarrow J/\psi f_0(980)$



Analysis procedure for both modes similar

- · Combinatorial background suppressed with a BDT using kinematic variables
- Background subtracted using *sPlot* with B<sup>0</sup><sub>s</sub> candidate mass
- Careful study of angular and decay-time efficiencies, time resolution, flavour tagging
- sFit to 3 helicity angles and  $B_s^0$  cand. decay time  $(+ m(\pi^+\pi^-) \text{ for } B_s^0 \rightarrow J/\psi \pi^+\pi^-)$

#### Background subtraction with sPlot



- Subtract  $\Lambda_b^0 \rightarrow J/\psi p K^-$  with negative MC weights,  $B^0 \rightarrow J/\psi K^+ \pi^-$  negligible
- Background in fit: combinatorial (exp.) +  $B^0 \rightarrow J/\psi K^+ K^-$  (Gauss.)
- Use wrong-sign  $B^0_s \to J/\psi \pi^\pm \pi^\pm$  data for combinatorial
- Physics backgrounds:  $\Lambda_b^0 \rightarrow J/\psi p K^-$  and  $B_s^0 \rightarrow J/\psi \eta' (\rightarrow \rho \gamma)$

#### Decay-time resolution

- Decay time  $t = L \cdot m_{B_{S}^{0}}/p$ , L = L(SV) L(PV)PV: primary vertex, SV: secondary vertex
- Resolution  $\sigma_{\rm eff}$  obtained from fit to *prompt* sample formed from J/ $\psi$  and two kaons from PV ( $\tau_{\rm prompt} = 0$ )
- Fit in bins of per-event decay-time error  $\delta_t$  from vertex fit



### Decay-time efficiency

- Using  $B^0 \to J/\psi K^{*0} (\to K^+ \pi^-)$  as control channel
- Decay-time efficiency product of individual splines for data and simulation to correct residual differences between signal and control samples

$$arepsilon_{ ext{data}}^{ extsf{B}_{ extsf{s}}^{ extsf{0}}}(t) = arepsilon_{ extsf{data}}^{ extsf{0}^{ extsf{0}}}(t) imes rac{arepsilon_{ extsf{MC}}^{ extsf{0}^{ extsf{0}}}(t)}{arepsilon_{ extsf{MC}}^{ extsf{0}^{ extsf{0}}}(t)}$$

• NB  $\varepsilon_{data}^{B_s^0}(t)$  function of  $\Gamma_d$  $\rightarrow$  access to  $\Gamma_s - \Gamma_d$  ( $\Gamma_H - \Gamma_d$ ) in decay-time fit to  $B_s^0 \rightarrow J/\psi K^+ K^-$  ( $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ )



### Angular efficiency

- Selection and detector acceptance introduce efficiency effects in angular and  $m(\pi^+\pi^-)$  distributions
- Efficiencies obtained from simulation and corrected to match the data  $\rightarrow$  Method in  $B^0_s \rightarrow J/\psi K^+ K^-$  validated on  $B^+ \rightarrow J/\psi K^+$  and  $B^0 \rightarrow J/\psi K^*$  data, good agreement



Veronika Chobanova

### Flavour tagging[PoS(LHCP2018)230]

• Tagging in Run 2 improved  $\Rightarrow$  30% higher tagging power than Run 1  $\varepsilon_{tag}(B_s^0 \rightarrow J/\psi K^+ K^-) = 4.73 \pm 0.34\%$  (vs  $\approx 3.73\%$  in Run 1)  $\varepsilon_{tag}(B_s^0 \rightarrow J/\psi \pi^+ \pi^-) = 5.06 \pm 0.38\%$  (vs  $\approx 3.89\%$  in Run 1)



# Systematic uncertainties $\rm B^0_s \rightarrow J/\psi \, K^+ K^ _{[arXiv:1906.08356]}$

- Main syst. uncertainty on  $\phi_s$  is flavour tagging  $\sim$  0.015 rad, incorporated in statistical

| Source                                                  | $\phi_s$ | $ \lambda $ | $\Gamma_s - \Gamma_d$ | $\Delta\Gamma_s$     | $\Delta m_s$         | $ A_{\perp} ^2$ | $ A_0 ^2$ | $\delta_{\perp} - \delta_0$ | $\delta_{\parallel} - \delta_0$ |
|---------------------------------------------------------|----------|-------------|-----------------------|----------------------|----------------------|-----------------|-----------|-----------------------------|---------------------------------|
|                                                         | [rad]    |             | $[{\rm ps}^{-1}]$     | $[\mathrm{ps}^{-1}]$ | $[\mathrm{ps}^{-1}]$ |                 |           | [rad]                       | [rad]                           |
| Mass: width parametrisation                             |          | -           | -                     | 0.0002               | 0.001                | 0.0005          | 0.0006    | 0.05                        | 0.009                           |
| Mass: decay-time & angles dependence                    | 0.004    | 0.0037      | 0.0007                | 0.0022               | 0.016                | 0.0004          | 0.0002    | 0.01                        | 0.004                           |
| Multiple candidates                                     | 0.0011   | 0.0011      | 0.0003                | 0.0001               | 0.001                | 0.0001          | 0.0006    | 0.01                        | 0.002                           |
| Fit bias                                                | 0.0010   | -           | -                     | 0.0003               | 0.001                | 0.0006          | 0.0001    | 0.02                        | 0.033                           |
| $C_{\rm SP}$ factors                                    | 0.0010   | 0.0010      | -                     | 0.0001               | 0.002                | 0.0001          | -         | 0.01                        | 0.005                           |
| Time resolution: model applicability                    | -        | -           | -                     | -                    | 0.001                | -               | -         | -                           | 0.001                           |
| Time resolution: $t$ bias                               | 0.0032   | 0.0010      | 0.0002                | 0.0003               | 0.005                | -               | -         | 0.08                        | 0.001                           |
| Time resolution: wrong PV                               | -        | -           | -                     | -                    | 0.001                | -               | -         | -                           | 0.001                           |
| Angular efficiency: simulated sample size               | 0.0011   | 0.0018      | -                     | -                    | 0.001                | 0.0004          | 0.0003    | -                           | 0.004                           |
| Angular efficiency: weighting                           | 0.0022   | 0.0043      | 0.0001                | 0.0002               | 0.001                | 0.0011          | 0.0020    | 0.01                        | 0.008                           |
| Angular efficiency: clone candidates                    | 0.0005   | 0.0014      | 0.0002                | 0.0001               | -                    | 0.0001          | 0.0002    | -                           | 0.002                           |
| Angular efficiency: t & $\sigma_t$ dependence           | 0.0012   | 0.0007      | 0.0002                | 0.0010               | 0.003                | 0.0012          | 0.0008    | 0.03                        | 0.006                           |
| Decay-time efficiency: statistical                      | -        | -           | 0.0012                | 0.0008               | -                    | 0.0003          | 0.0002    | -                           | -                               |
| Decay-time efficiency: kinematic weighting              | -        | -           | 0.0002                | -                    | -                    | -               | -         | -                           | -                               |
| Decay-time efficiency: PDF weighting                    | -        | -           | 0.0001                | 0.0001               | -                    | -               | -         | -                           | -                               |
| Decay-time efficiency: $\Delta \Gamma_s = 0$ simulation | -        | -           | 0.0003                | 0.0005               | -                    | 0.0002          | 0.0001    | -                           | -                               |
| Length scale                                            | -        | -           | -                     | -                    | 0.004                | -               | -         | -                           | -                               |
| Quadratic sum of syst.                                  | 0.0061   | 0.0064      | 0.0015                | 0.0026               | 0.018                | 0.0019          | 0.0024    | 0.10                        | 0.037                           |

# Systematic uncertainties $\rm B^0_s \rightarrow J/\psi \pi^+\pi^ _{[arXiv:1903.05530]}$

| Source                            | $\Gamma_{\rm H} - \Gamma_{B^0}$ | $ \lambda $        | $\phi_s$ |
|-----------------------------------|---------------------------------|--------------------|----------|
|                                   | $[fs^{-1}]$                     | $[\times 10^{-3}]$ | [mrad]   |
| Decay-time acceptance             | 2.0                             | 0.0                | 0.3      |
| $	au_{B^0}$                       | 0.2                             | 0.5                | 0.0      |
| Efficiency $(m_{\pi\pi}, \Omega)$ | 0.2                             | 0.1                | 0.0      |
| Decay-time resolution width       | 0.0                             | 4.3                | 4.0      |
| Decay-time resolution mean        | 0.3                             | 1.2                | 0.3      |
| Background                        | 3.0                             | 2.7                | 0.6      |
| Flavour tagging                   | 0.0                             | 2.2                | 2.3      |
| $\Delta m_s$                      | 0.3                             | 4.6                | 2.5      |
| $\Gamma_{L}$                      | 0.3                             | 0.4                | 0.4      |
| $B_c^+$                           | 0.5                             | -                  | -        |
| Resonance parameters              | 0.6                             | 1.9                | 0.8      |
| Resonance modelling               | 0.5                             | 28.9               | 9.0      |
| Production asymmetry              | 0.3                             | 0.6                | 3.4      |
| Total                             | 3.8                             | 29.9               | 11.0     |

#### Results and LHCb $\phi_s$ combination



## $B_{s}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$ [arXiv:1903.05530]



Results in agreement with previous measurements and SM predictions

$$\begin{split} \phi_s \!=\! -41 \pm 25 \, \text{mrad} \\ |\lambda| \!=\! 0.993 \pm 0.010 \\ \Gamma_s \!=\! 0.6562 \pm 0.0021 \, \text{ps}^{-1} \\ \Delta\Gamma_s \!=\! 0.0816 \pm 0.0048 \, \text{ps}^{-1} \end{split}$$



## HFLAV $\phi_s$ combination

- Combination with preliminary ATLAS Run 2 result [ATLAS-CONF-2019-009] (next talk)
- In agreement with SM, experimental uncertainty on  $\phi_s$  improved by 30%!
- Previous HFLAV:  $\phi_s = -21 \pm 31 \text{ mrad}$



