KHCh

표 Searches for direct CP violation in two-body and quasi-two-body B meson decays at LHCb

Tom Hadavizadeh, University of Oxford on behalf of the LHCb Collaboration

EPS-HEP 2019, Ghent, Belgium
10th - 17th July 2019

Introduction

- Direct CP asymmetries arise from interference between different amplitudes

- The interference is largest when the competing amplitudes are of a similar size
- For suppressed decays, loop level processes can compete with tree level processes
- Decays with contributions from loop level amplitudes give access to processes beyond the standard model
- Heavy particles may produce effects that are observable with current sensitivities

Introduction

- This talk will cover three recent measurements of quasi-two-body decays with contributions from loop level processes

$$
B^{+} \rightarrow J / \psi \rho^{+}
$$

A measurement of direct CP asymmetry and branching fraction

$$
B^{0} \rightarrow \rho(770)^{0} K^{*}(892)^{0}
$$

An amplitude analysis that determines CP asymmetries of contributing amplitudes

$$
B_{(s)}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}
$$

 process

All three analyses are performed using the $3 \mathrm{fb}^{-1}$ Run 1 data set

- Many other talks related to quasi-two-body decays are being presented by LHCb in this conference:

Time-dependent charmless B decays

$$
B_{(s)}^{0} \rightarrow h^{+} h^{\prime}
$$

Talk presented by Louis Henry
11:40 11th July
including modes: $\quad B_{s}^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$

$$
B_{s}^{0} \rightarrow \phi \phi
$$

CP violation in multibody charmless b-hadron decays
including modes:

$$
B_{s}^{0} \rightarrow K_{\mathrm{S}}^{0} K^{ \pm} \pi^{ \pm}
$$

$$
B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}
$$

Observation of several sources of CP violation in $\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decays at LHCb
Talk presented by Jeremy Dalseno
12:00 11th July

Recent results in quasi-two-body decays

LHCb-PAPER-2018-036 - Measurement of the branching fraction and CP asymmetry in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$decays

- Study of the $B^{0} \rightarrow \rho(770)^{0} K^{*}(892)^{0}$ decay with an amplitude analysis of $B^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$
- Amplitude analysis of the $B(s)^{0} \rightarrow K^{* 0} K^{* 0}$ decays and measurement of the branching fraction of the $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{~K}^{* 0}$ decay
$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$
- This decay process via tree and penguin topology processes

$$
\mathcal{A}^{C P} \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow J / \psi \rho^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow J / \psi \rho^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow J / \psi \rho^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow J / \psi \rho^{+}\right)}
$$

- The value of Acp provides an estimate of the penguin-to-tree amplitude ratio for $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}}$ processes
- This can place constraints on penguin contributions in the determination of φ_{s}

Decays are reconstructed using three charged tracks and two photons

The branching fraction is measured

$$
\begin{aligned}
& B^{+} \rightarrow J / \psi \rho^{+} \\
& \stackrel{\hookrightarrow}{\hookrightarrow} \pi^{+}\left(\pi^{0} \rightarrow \gamma \gamma\right) \\
& \rightarrow \mu^{+} \mu^{-}
\end{aligned}
$$ relative to $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}$decays

$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$

Selection

- Preselection
- Kinematic, geometrical and vertex requirements
- Vetoes for specific backgrounds
- Invariant mass vetoes remove $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \pi^{+}$and $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{+}$with a random π^{0}
- Vertex quality requirements remove backgrounds with additional charged tracks
- Multi-variate analysis
- A neural network is trained on simulations and data sidebands
- Reweighing is used to ensure good data-MC agreement
- A kinematic fit is used to constrain the B^{+}candidate to originate at the primary interaction, as well as the J / Ψ and π^{0} mass to known values
$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{\rho}^{+}$

Mass fit

- A 2D fit to $m\left(B^{+}\right)$vs. $m\left(\rho^{+}\right)$is performed, simultaneous for 2011 and 2012 data
- The production asymmetry of B^{+}mesons determined in other measurements is subtracted

$$
\mathcal{A}^{C P}=\mathcal{A}_{\mathrm{raw}}^{C P}-\mathcal{A}^{\mathrm{prod}}
$$

Results

- The results are the most precise to date

$$
\begin{aligned}
\mathcal{A}^{C P}\left(B^{+} \rightarrow J / \psi \rho^{+}\right) & =-0.045_{-0.057}^{+0.056} \pm 0.008 \\
\mathcal{B}\left(B^{+} \rightarrow J / \psi \rho^{+}\right) & =\left(3.81_{-0.24}^{+0.25} \pm 0.35\right) \times 10^{-5} .
\end{aligned}
$$

Systematics

- BF measurement is limited by π^{0} reconstruction efficiency, dominated by $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{\star}+\right)$

Eur. Phys. J. C79 (2019) 537

Recent results in quasi-two-body decays

- Measurement of the branching fraction and CP asymmetry in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$decays

LHCb-PAPER-2018-042 - Study of the $B^{0} \rightarrow \rho(770)^{0} K^{*}(892)^{0}$ decay with an amplitude analysis JHEP 05 (2019) 026 of $B^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$

- Amplitude analysis of the $B(s)^{0} \rightarrow K^{* 0} K^{* 0}$ decays and measurement of the branching fraction of the $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{~K}^{* 0}$ decay

$$
B^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{+} \pi^{-}\right)
$$

- Direct CP asymmetries are measured in this final state by determining the differences in partial widths of different amplitudes

$$
B^{0} \rightarrow \rho(770)^{0} K^{*}(892)^{0}
$$

- The tree-level contribution to this decay is doubly Cabibbo-suppressed so gluonic and electroweak penguins compete

Tree level

Gluonic penguin

Electroweak penguin

- In this $\mathrm{P} \rightarrow \mathrm{VV}$ decay, the electroweak penguin amplitudes contribute with different signs for different helicity eigenstates
$B^{0} \rightarrow \rho^{0} K^{* 0}$

Selection

- Preselection: kinematic, geometric and particle identification requirements
- Multi-variate analysis
- A BDT is trained on simulations and data side bands
- Vetoes for specific backgrounds
- Particle identification requirements remove $\Lambda_{b}{ }^{0} \rightarrow p \pi \pi \pi$ decays
- D^{0} veto to remove incorrectly paired $B^{0} \rightarrow D^{0} \pi \pi$ decays
- Three body modes including $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}$removed with angular cut

Mass fit

- Data split into 8 simultaneous categories (trigger, year and charge)
- $B_{s}{ }^{0} \rightarrow(K \pi)(K \pi)$ background is subtracted by injecting simulations with negative weights
- sPlot method used to extract signal components

Amplitude model

- The amplitude model is made up from different contributions within the ($\pi \pi$) and ($\mathrm{K} \pi$) mass windows

	$K \pi$ resonances	
	$K^{*}(892){ }^{0}$	scalar K π
$凶 \sim$	VV	SV
¢ ω	VV	SV
${ }_{\text {¢ }} \mathrm{f}_{0}(500)^{0}$	SV	SS
E $\mathrm{fo}_{0}(980)^{0}$	SV	SS
$\mathrm{fo}_{0}(1370)^{0}$	SV	SS

- Three helicity amplitudes contribute from each VV combination
- For VV amplitudes the polarisation fraction is defined to be:

$$
f_{V V}^{0, \|, \perp}=\frac{\left|A_{V V}^{0, \|, \perp}\right|^{2}}{\left|A_{V V}^{0}\right|^{2}+\left|A_{V V}^{\|}\right|^{2}+\left|A_{V V}^{\perp}\right|^{2}}
$$

- CP averages and asymmetries are constructed for particle and antiparticle decays

$$
\tilde{f}_{V V}=\frac{1}{2}\left(f_{V V}+\bar{f}_{V V}\right) \quad A_{V V}=\frac{\bar{f}_{V V}-f_{V V}}{\bar{f}_{V V}+f_{V V}}
$$

- Additionally, phase differences and T-odd quantities are measured

Amplitude fit

Results

- A small polarisation fraction and significant direct CP asymmetry is measured for the $\mathrm{B}^{0} \rightarrow \rho^{0} \mathrm{~K}^{*}$ component

$$
\tilde{f}_{\rho K^{*}}^{0}=0.164 \pm 0.015 \pm 0.022 \quad \mathcal{A}_{\rho K^{*}}^{0}=-0.62 \pm 0.09 \pm 0.09
$$

- This is the first observation of CP asymmetry in angular distributions of $\mathrm{B}^{0} \rightarrow \mathrm{VV}$ decays

JHEP 05 (2019) 026

Recent results in quasi-two-body decays

- Measurement of the branching fraction and CP asymmetry in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$decays
- Study of the $B^{0} \rightarrow \rho(770)^{0} K^{*}(892)^{0}$ decay with an amplitude analysis of $B^{0} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$

LHCb-PAPER-2019-004 - Amplitude analysis of the $B(s)^{0} \rightarrow K^{*} K^{* 0}$ decays and measurement of the branching fraction of the $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} 0 \mathrm{~K}^{*}$ decay

$$
B_{(s)}^{0} \rightarrow\left(K^{-} \pi^{+}\right)\left(K^{+} \pi^{-}\right)
$$

- This analysis performs an untagged, time-integrated amplitude analysis

$$
B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}
$$

Can be used to measure the unitarity angle β_{s}, relevant in $B_{s}{ }^{0}$ processes

High precision measurements require control of sub-leading amplitudes

Previous measurement suggest no CP asymmetry, small polarisation fraction and small S-wave contribution
arXiv:1712.08683

- This analysis updates polarisation fractions, S-wave contributions and measures B0 branching fraction
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \overline{\mathrm{~K}}^{*} 0$

Selection

- Preselection:
- Kinematic, geometrical and particle identification requirements
- Multi-variate analysis:
- Gradient boosted BDT trained on MC and data sidebands
- Vetoes for specific Backgrounds:
- Invariant mass windows and PID selections suppress many peaking backgrounds

Mass fit

- A simultaneous fit is performed to 2011 and 2012 data
- $\mathrm{B}^{0} \rightarrow \rho^{0} \mathrm{~K}^{* 0}$ background is subtracted by injecting simulations with negative weights
- sPlot method used to extract signal components

arXiv:1905.06662

Amplitude Model

- The amplitude model is made up from S-wave and P-wave $K \pi$ resonances

	$\mathrm{K}^{+} \Pi^{-}$resonances			
	$\mathrm{K}^{*}(892)^{0}$	$K_{0}{ }^{*}(1430){ }^{\circ}$	$\mathrm{Ko}^{*}(700)^{0}$	$(\mathrm{K} \pi)_{0}$
	VV	VS	VS	VS
$\mathrm{Ko}^{*}(1430)^{0}$	SV	SS	SS	SS
$K_{0}{ }^{*}(700)^{0}$	SV	SS	SS	SS
亡 (Kп)	SV	SS	SS	SS

- The polarisation fraction is measured for the VV contribution

$$
f_{V V}^{0, \|, \perp}=\frac{\left|A_{V V}^{0, \|, \perp}\right|^{2}}{\left|A_{V V}^{0}\right|^{2}+\left|A_{V V}^{\|}\right|^{2}+\left|A_{V V}^{\perp}\right|^{2}}
$$

- Additionally the S-wave fraction can be determined from the amplitudes of the SS, SV and VS contributions

Amplitude fit

Results

- The longitudinal polarisation fractions confirm previous measurements

$$
\begin{aligned}
& f_{L}\left(B^{0}\right)=0.724 \pm 0.051 \pm 0.016 \\
& f_{L}\left(B_{s}^{0}\right)=0.240 \pm 0.031 \pm 0.025
\end{aligned}
$$

- The branching fraction of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \overline{\mathrm{~K}}^{* 0}$ decays is determined to be

$$
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}\right)=(8.0 \pm 0.9(\text { stat }) \pm 0.4(\text { syst })) \times 10^{-7}
$$

$$
\text { Belle } \mathcal{B}=2.6_{-2.9-0.7}^{+3.3+1.0} \times 10^{-7} \underline{\text { Phys. Rev. D81 (2010) } 071101}
$$

$$
\text { BaBar } \mathcal{B}=12.8_{-3.0}^{+3.5} \times 10^{-7}
$$

Bo fit

arXiv:1905.06662

Summary

- LHCb has produced measurements of CP asymmetries, branching fractions and polarisation fractions in quasi-two-body decays including:

> The most precise measurement of CP asymmetry and branching fraction of $\mathrm{B}^{+} \rightarrow J / \Psi \rho^{+}$decays

This is the first observation of CP asymmetry in angular distributions of $\mathrm{B}^{0} \rightarrow \rho^{0} \mathrm{~K}^{* 0}$ decays

Polarisation fraction and branching fraction measurements in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} 0 \overline{\mathrm{~K}}^{*} 0$ decays

- LHCb has a large sample of Run 2 data, so expect more exciting results in the near future

Back Up

$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \rho^{+}$

Branching fraction systematics

Source of uncertainty	Relative uncertainty [\%]
Trigger efficiency	1.4
Charged particle reconstruction efficiency	0.5
π^{0} reconstruction efficiency	6.3 Dominant
Hadron identification efficiency	2.1
Muon identification efficiency	0.4
Selection efficiency $B^{+} \rightarrow J / \psi K^{+}$	0.1
Selection efficiency $B^{+} \rightarrow J / \psi \rho^{+}$	1.8
Removal of multiple candidates	1.2
Fit function	4.0
$B^{+} \rightarrow J / \psi \rho^{+}$polarization	2.2
Fit ranges	1.6
Nonresonant line shape	1.5
Neglecting interference	2.8
Quadratic sum	9.1

Acp systematics

Source of uncertainty	Uncertainty
B^{+}production asymmetry and background asymmetry	0.006
Signal fit function	0.005
Quadratic sum	0.008

$\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi \mathrm{\rho}^{+}$

Mass fit

- Shapes:
- Signal B+ mass: Sum of two Crystal Ball functions with tails fixed from simulation
- Signal rho+ mass: Relativistic Breit-Wigner with parameters fixed to simulation
- Part-Reco: two-dimensional kernel density estimations

OXFORD

Full results

Parameter	$C P$ average, \tilde{f}	$C P$ asymmetry, \mathcal{A}	
$\left\|A_{\rho K^{*}}^{0}\right\|^{2}$	$0.32 \pm 0.04 \pm 0.07$	$-0.75 \pm 0.07 \pm 0.17$	
$\left\|A_{\rho K^{*}}^{\\|}\right\|^{2}$	$0.70 \pm 0.04 \pm 0.08$	$-0.049 \pm 0.053 \pm 0.019$	
$\left\|A_{\rho K^{*}}^{\perp}\right\|^{2}$	$0.67 \pm 0.04 \pm 0.07$	$-0.187 \pm 0.051 \pm 0.026$	
$\left\|A_{\omega K^{*}}^{0}\right\|^{2}$	$0.019 \pm 0.010 \pm 0.012$	$-0.6 \pm 0.4 \pm 0.4$	
$\left\|A_{\omega K^{*}}\right\|^{2}$	$0.0050 \pm 0.0029 \pm 0.0031$	$-0.30 \pm 0.54 \pm 0.28$	
$\left\|A_{\omega K^{*}}^{\perp}\right\|^{2}$	$0.0020 \pm 0.0019 \pm 0.0015$	$-0.2 \pm 0.9 \quad \pm 0.4$	
$\left\|A_{\omega(K \pi)}\right\|^{2}$	$0.026 \pm 0.011 \pm 0.025$	$-0.47 \pm 0.33 \pm 0.45$	
$\left\|A_{f_{0}(500) K^{*}}\right\|^{2}$	$0.53 \pm 0.05 \pm 0.10$	$-0.06 \pm 0.09 \pm 0.04$	
$\left\|A_{f_{0}(980) K^{*}}\right\|^{2}$	$2.42 \pm 0.13 \pm 0.25$	$-0.022 \pm 0.052 \pm 0.023$	
$\left\|A_{f_{0}(1370) K^{*}}\right\|^{2}$	$1.29 \pm 0.09 \pm 0.20$	$-0.09 \pm 0.07 \pm 0.04$	
$\left\|A_{f_{0}(500)(K \pi)}\right\|^{2}$	$0.174 \pm 0.021 \pm 0.039$	$0.30 \pm 0.12 \pm 0.09$	
$\left\|A_{f_{0}(980)(K \pi)}\right\|^{2}$	$1.18 \pm 0.08 \pm 0.07$	$-0.083 \pm 0.066 \pm 0.023$	
$\left\|A_{f_{0}(1370)(K \pi)}\right\|^{2}$	$0.139 \pm 0.028 \pm 0.039$	$-0.48 \pm 0.17 \pm 0.15$	
$f_{\rho K^{*}}^{0}$	$0.164 \pm 0.015 \pm 0.022$	$-0.62 \pm 0.09 \pm 0.09$	
$f_{\rho K^{*}}^{\\|}$	$0.435 \pm 0.016 \pm 0.042$	$0.188 \pm 0.037 \pm 0.022$	
$f_{\rho K^{*}}^{\perp}$	$0.401 \pm 0.016 \pm 0.037$	$0.050 \pm 0.039 \pm 0.015$	
$f_{\omega K^{*}}^{0}$	$0.68 \quad \pm 0.17 \quad \pm 0.16$	$-0.13 \pm 0.27 \pm 0.13$	
$f_{\omega K^{*}}^{\\|}$	$0.22 \pm 0.14 \pm 0.15$	$0.26 \pm 0.55 \pm 0.22$	
$f_{\omega K^{*}}^{\perp}$	$0.10 \pm 0.09 \pm 0.09$	$0.3 \pm 0.8 \pm 0.4$	

Parameter	\| $C P$ average, $\frac{1}{2}\left(\delta_{\bar{B}}+\delta_{B}\right)$ [rad]			$C P$ difference, $\frac{1}{2}\left(\delta_{\bar{B}}-\delta_{B}\right)[\mathrm{rad}]$	
$\delta_{\rho K^{*}}^{0}$	1.57	± 0.08	± 0.18	$0.12 \pm 0.08 \pm 0.04$	
$\delta_{\rho K^{*}}^{\\|}$	0.795	± 0.030	± 0.068	$0.014 \pm 0.030 \pm 0.026$	
$\delta_{\rho K^{*}}^{\perp}$	-2.365	± 0.032	± 0.054	$0.000 \pm 0.032 \pm 0.013$	
$\delta_{\omega K^{*}}^{0}$	-0.86	± 0.29	± 0.71	$0.03 \pm 0.29 \pm 0.16$	
$\delta_{\omega K^{*}}^{\\|}$	-1.83	± 0.29	± 0.32	$0.59 \pm 0.29 \pm 0.07$	
$\delta_{\omega K^{*}}^{\perp}$	1.6	± 0.4	± 0.6	$-0.25 \pm 0.43 \pm 0.16$	
$\delta_{\omega(K \pi)}$	-2.32	± 0.22	± 0.24	$-0.20 \pm 0.22 \pm 0.14$	
$\delta_{f_{0}(500) K^{*}}$	-2.28	± 0.06	± 0.22	$-0.00 \pm 0.06 \pm 0.05$	
$\delta_{f_{0}(980) K^{*}}$	0.39	± 0.04	± 0.07	$0.018 \pm 0.038 \pm 0.022$	
$\delta_{f_{0}(1370) K^{*}}$	-2.76	± 0.05	± 0.09	$0.076 \pm 0.051 \pm 0.025$	
$\delta_{f_{0}(500)(K \pi)}$	-2.80	± 0.09	± 0.21	$-0.206 \pm 0.088 \pm 0.034$	
$\delta_{f_{0}(980)(K \pi)}$	-2.982	± 0.032	± 0.057	$-0.027 \pm 0.032 \pm 0.013$	
$\delta_{f_{0}(1370)(K \pi)}$	1.76	± 0.10	± 0.11	$-0.16 \pm 0.10 \pm 0.04$	
$\delta_{\rho K^{*}}^{\\|-\perp}$	3.160	± 0.035	± 0.044	$0.014 \pm 0.035 \pm 0.026$	
$\delta_{\rho K^{*}}^{\\|-0}$	-0.77	± 0.09	± 0.06	$-0.109 \pm 0.085 \pm 0.034$	
$\delta_{\rho K^{*}}^{\perp-0}$	-3.93	± 0.09	± 0.07	$-0.123 \pm 0.085 \pm 0.035$	
$\delta_{\omega K^{*}}^{\\|-\perp}$	-3.4	± 0.5	± 0.7	$0.84 \pm 0.52 \pm 0.16$	
$\delta_{\omega K^{*}}^{\\|-0}$	-1.0	± 0.4	± 0.6	$0.57 \pm 0.41 \pm 0.17$	
$\delta_{\omega K^{*}}^{\perp-0}$	2.4	± 0.5	± 0.8	$-0.28 \pm 0.51 \pm 0.24$	

$\mathrm{B}^{0} \rightarrow \boldsymbol{\rho}^{0} \mathrm{~K}^{* 0}$

Comparison to theory

Observable	QCDF [4]	pQCD [11]	This work	
	$C P$ average	$0.22_{-0.03-0.14}^{+0.03+0.53}$	$0.65_{-0.03-0.04}^{+0.03+0.03}$	$0.164 \pm 0.015 \pm 0.022$
	$C P$ asymmetry	$-0.30_{-0.11-0.49}^{+0.11+0.61}$	$0.0364_{-0.0107}^{+0.0120}$	$-0.62 \pm 0.09 \pm 0.09$
	$C P$ average	$0.39_{-0.02-0.07}^{+0.02+0.27}$	$0.169_{-0.018}^{+0.027}$	$0.401 \pm 0.016 \pm 0.037$
		-	$-0.0771_{-0.0186}^{+0.0197}$	$0.050 \pm 0.039 \pm 0.015$

[4] M. Beneke, J. Rohrer, and D. Yang, Branching fractions, polarisation and asymmetries of $B \rightarrow V V$ decays, Nucl. Phys. B774 (2007) 64, arXiv:hep-ph/0612290.
[11] Z.-T. Zou et al., Improved estimates of the $B_{(s)} \rightarrow V V$ decays in perturbative $Q C D$ approach, Phys. Rev. D91 (2015) 054033, arXiv:1501.00784.
$\mathrm{B}^{0} \rightarrow \rho^{0} \mathrm{~K}^{* 0}$

Systematic uncertainties

- Uncertainties on the parameters in the mass propagators
- Angular momentum barrier factors
- Background subtractions
- Description of the kinematic acceptance
- Masses and angular resolution
- Fit method
- Pollution due to $\mathrm{B}^{0} \rightarrow \mathrm{a}_{1}$ (1260)- K^{+}decays
- Symmetrised ($\pi \pi$) contributions in the model
- Simulation corrections
$B^{0} \rightarrow \rho^{0} K^{* 0}$

Systematic uncertainties

Table 5: Table (I) of the systematic uncertainties. The abbreviations $S 1, S 2$ and $S 3$ stand for $f_{0}(500), f_{0}(980)$ and $f_{0}(1370)$, respectively. Negligible values are represented by a dash (-).

Systematic uncertainty	$\left\|A_{\rho K^{*}}^{0}\right\|^{2}$	$\left\|A_{\rho K^{*}}^{\\|}\right\|^{2}$	$\left\|A_{\rho K^{*}}^{\perp}\right\|^{2}$	$\left\|A_{\omega K^{*}}^{0}\right\|^{2}$	$\left\|A_{\omega K^{*}}^{\\|}\right\|^{2}$	$\left\|A_{\omega K^{*}}^{\perp}\right\|^{2}$	$\left\|A_{\omega(K \pi)}\right\|^{2}$	$\left\|A_{S 1 K^{*}}\right\|^{2}$	$\left\|A_{S 2 K^{*}}\right\|^{2}$	$\left\|A_{S 3 K^{*}}\right\|^{2}$
\checkmark Centrifugal barrier factors	-	-	-	-	0.0001	-	0.001	0.01	0.01	0.04
\% Hypatia parameters	-	-	-	-	-	-	-	-	-	-
$\stackrel{\sim}{0} \quad B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$.	0.01	0.01	0.01	0.001	0.0004	0.0002	0.001	0.01	0.02	0.01
$\underset{\sim}{\sim}$ Simulation sample size	0.01	0.01	0.01	0.002	0.0007	0.0003	0.005	0.02	0.06	0.04
\bigcirc Data-Simulation corrections	-	-	-	-	0.0002	-	-	-	-	-
Centrifugal barrier factors	-	-	0.004	-	-	-	0.01	-	0.003	0.01
g Hypatia parameters	-	0.002	0.002	-	0.01	-	0.01	-	0.002	-
凩 $B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$.	0.03	0.011	0.013	-	0.13	0.1	0.01	0.02	0.005	0.01
O Simulation sample size	0.02	0.014	0.011	0.1	0.17	0.4	0.14	0.04	0.022	0.03
Data-Simulation corrections	-	0.001	-	-	0.01	-	0.01	-	-	-
Mass propagators parameters Ô - Masses and angles resolution 10 Fit method Ő Ð $a_{1}(1260)$ pollution Symmetrised ($\pi \pi$) PDF	0.01	0.033	0.040	0.002	0.0003	0.0001	0.002	0.07	0.170	0.12
	0.01	0.023	0.040	0.010	0.0028	0.0010	0.024	0.03	0.050	0.10
	0.01	0.007	0.007	0.004	0.0005	0.0010	0.001	0.01	0.029	-
	0.06	0.070	0.019	0.003	0.0005	0.0002	0.003	0.05	0.130	0.10
	0.04	0.030	0.021	-	0.0008	0.0003	0.004	0.03	0.080	0.06
Systematic uncertainty	$\left\|A_{S 1(K \pi)}\right\|^{2}$	$\left\|A_{S 2(K \pi)}\right\|^{2}$	$\left\|A_{S 3(K \pi)}\right\|^{2}$	$\delta_{\rho K^{*}}^{0}$	$\delta_{\rho K^{*}}^{\\|}$	$\delta_{\rho K^{*}}^{\perp}$	$\delta_{\omega K^{*}}^{0}$	$\delta_{\omega K^{*}}^{\\|}$	$\delta_{\omega K^{*}}^{\perp}$	$\delta_{\omega(K \pi)}$
© Centrifugal barrier factors	0.003	0.02	0.003	-	0.001	0.002	0.03	0.01	-	0.01
Hypatia parameters	0.001	0.01	0.001		0.001	0.002	0.01	0.01		
$\stackrel{D}{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$.	0.008	0.01	0.004	0.02	0.018	0.007	0.04	0.02	0.1	0.01
๔ Simulation sample size	0.006	0.03	0.007	0.02	0.009	0.008	0.15	0.07	0.1	0.10
O Data-Simulation corrections	-	-	0.001	-	0.001	-	-	-	-	-
. Centrifugal barrier factors	-	0.010	0.02	-	0.004	0.001	0.02	0.01	0.03	0.02
हो Hypatia parameters	0.01	0.004	0.01	-	0.001	0.001	0.01	0.01	0.01	-
§ $\quad B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$.	0.05	0.007	0.03	0.03	0.024	0.009	0.05	0.02	0.06	0.02
© Simulation sample size	0.04	0.020	0.06	0.02	0.009	0.009	0.15	0.07	0.15	0.13
Data-Simulation corrections	-	0.001	-				-	0.01	0.01	-
Mass propagators parameters ถี \frown Masses and angles resolution 10 Fit method $\stackrel{\ominus}{\ominus} a_{1}(1260)$ pollution Symmetrised ($\pi \pi$) PDF	0.012	0.027	0.024	0.03	0.009	0.008	0.04	0.05	0.09	0.04
	0.010	0.026	0.011	0.03	0.020	0.017	0.30	0.30	0.50	0.17
	0.003	0.021	0.005	-	0.001	0.001	0.03	0.05	0.04	0.01
	0.018	0.040	0.019	0.17	0.060	0.050	0.60	0.06	0.05	0.12
	0.029	0.025	0.019	0.02	0.010	0.012	-	0.04	0.30	0.05

$\mathrm{B}^{0} \rightarrow \rho^{0} \mathrm{~K}^{*} 0$

Systematic uncertainties

Table 6: Table (II) of the systematic uncertainties. The abbreviations $S 1, S 2$ and $S 3$ stand for $f_{0}(500), f_{0}(980)$ and $f_{0}(1370)$, respectively. Negligible values are represented by a dash (-).

| Systematic uncertainty | $\delta_{S 1 K^{*}}$ | $\delta_{S 2 K^{*}}$ | $\delta_{S 3 K^{*}}$ | $\delta_{S 1(K \pi)}$ | $\delta_{S 2(K \pi)}$ | $\delta_{S 3(K \pi)}$ | $f_{\rho K^{*}}^{0}$ | $f_{\rho K^{*}}^{\\|}$ | $f_{\rho K^{*}}^{\perp}$ | $f_{\omega K^{*}}^{0}$ | $f_{\omega K^{*}}^{\\|}$ | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \& Centrifugal barrier factors | 0.01 | - | 0.01 | 0.01 | 0.001 | 0.02 | 0.001 | 0.001 | 0.002 | - | - |
| \% Hypatia parameters | - | - | - | - | 0.001 | 0.01 | 0.001 | 0.001 | 0.001 | - | - |
| $\stackrel{\text { d }}{\sim} B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$. | 0.05 | - | 0.01 | 0.02 | 0.002 | 0.01 | 0.005 | 0.003 | 0.005 | 0.02 | 0.02 |
| $\underset{\sim}{\sim}$ Simulation sample size | 0.02 | 0.01 | 0.02 | 0.02 | 0.009 | 0.03 | 0.004 | 0.004 | 0.004 | 0.06 | 0.05 |
| © Data-Simulation corrections | - | - | - | - | 0.001 | - | - | - | - | 0.01 | - |
| . Centrifugal barrier factors | 0.01 | 0.001 | 0.001 | 0.004 | 0.003 | 0.02 | - | 0.001 | 0.002 | 0.01 | 0.01 |
| gं Hypatia parameters | , | 0.002 | 0.002 | 0.004 | 0.001 | 0.01 | - | 0.003 | 0.002 | 0.01 | 0.01 |
| $\widetilde{\mathbb{Z}} \quad B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$. | 0.04 | 0.005 | 0.011 | 0.023 | 0.002 | 0.01 | 0.03 | 0.007 | 0.011 | 0.03 | 0.06 |
| O Simulation sample size | 0.03 | 0.022 | 0.022 | 0.025 | 0.012 | 0.03 | 0.02 | 0.010 | 0.009 | 0.12 | 0.14 |
| Data-Simulation corrections | - | 0.001 | - | 0.003 | - | - | - | 0.001 | 0.001 | - | 0.01 |
| Mass propagators parameters | 0.19 | 0.031 | 0.070 | 0.200 | 0.018 | 0.06 | 0.011 | 0.005 | 0.006 | 0.01 | 0.01 |
| | 0.02 | 0.027 | 0.017 | 0.026 | 0.026 | 0.05 | 0.010 | 0.016 | 0.018 | 0.14 | 0.12 |
| | - | 0.004 | 0.001 | 0.002 | 0.001 | - | 0.003 | 0.001 | 0.002 | 0.01 | 0.05 |
| | 0.09 | 0.040 | 0.040 | 0.040 | 0.050 | 0.04 | 0.015 | 0.040 | 0.031 | 0.02 | 0.01 |
| | 0.03 | 0.029 | 0.022 | 0.035 | 0.006 | 0.05 | 0.004 | - | 0.004 | 0.04 | 0.05 |
| Systematic uncertainty | $f_{\omega K^{*}}^{\perp}$ | $\delta_{\rho K^{*}}^{\\|-\perp}$ | $\delta_{\rho K^{*}}^{\\|-0}$ | $\delta_{\rho K^{*}}^{\perp-0}$ | $\delta_{\omega K^{*}}^{\\|-\perp}$ | $\delta_{\omega K^{*}}^{\\|-0}$ | $\delta_{\omega K^{*}}^{\perp-0}$ | $\mathcal{A}_{\mathrm{T}}^{\rho K^{*}, 1}$ | $\mathcal{A}_{\mathrm{T}}^{\rho K^{*}, 2}$ | $\mathcal{A}_{\mathrm{T}}^{\omega K^{*}, 1}$ | $\mathcal{A}_{\mathrm{T}}^{\omega K^{*}, 2}$ |
| \% Centrifugal barrier factors | - | 0.001 | - | - | - | - | - | 0.0002 | - | 0.001 | 0.001 |
| \%ow Hypatia parameters | - | 0.001 | - | - | - | - | - | 0.0002 | - | 0.001 | 0.001 |
| $\stackrel{\text { cos }}{ } B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$. | 0.01 | 0.018 | 0.02 | 0.02 | 0.1 | - | 0.1 | 0.0017 | 0.002 | 0.004 | 0.002 |
| $\underset{\sim}{\sim}$ Simulation sample size | 0.03 | 0.009 | 0.02 | 0.02 | 0.2 | 0.2 | 0.2 | 0.0013 | 0.002 | 0.012 | 0.012 |
| O Data-Simulation corrections | - | 0.001 | - | - | - | - | - | - | - | - | - |
| . Centrifugal barrier factors | - | 0.004 | 0.007 | 0.004 | 0.03 | 0.02 | 0.04 | 0.0003 | 0.001 | 0.001 | 0.001 |
| घ่ Hypatia parameters | 0.1 | 0.001 | 0.002 | 0.002 | 0.02 | 0.01 | 0.02 | 0.0001 | - | 0.001 | 0.001 |
| 钲 $B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0} \mathrm{bkg}$. | 0.2 | 0.024 | 0.020 | 0.026 | 0.06 | 0.04 | 0.13 | 0.0017 | 0.004 | 0.005 | 0.003 |
| Of Simulation sample size | 0.1 | 0.011 | 0.027 | 0.023 | 0.14 | 0.17 | 0.20 | 0.0013 | 0.002 | 0.015 | 0.017 |
| Data-Simulation corrections | - | - | 0.002 | 0.002 | 0.02 | 0.01 | 0.01 | - | - | 0.001 | - |
| Mass propagators parameters ㅇ Masses and angles resolution 10 Fit method $a_{1}(1260)$ pollution Symmetrised $(\pi \pi)$ PDF | - | 0.004 | 0.028 | 0.024 | 0.07 | 0.06 | 0.09 | 0.0006 | 0.001 | 0.002 | - |
| | 0.08 | 0.031 | 0.029 | 0.040 | 0.60 | 0.40 | 0.60 | 0.0020 | 0.005 | 0.026 | 0.019 |
| | 0.03 | 0.003 | 0.005 | 0.004 | 0.02 | 0.02 | 0.03 | 0.0001 | - | 0.005 | 0.001 |
| | 0.01 | 0.024 | 0.035 | 0.032 | 0.24 | 0.32 | 0.40 | 0.0040 | 0.004 | 0.012 | 0.001 |
| | 0.03 | 0.005 | 0.001 | 0.001 | 0.35 | 0.02 | 0.29 | 0.0007 | 0.001 | 0.018 | 0.003 |

$B^{0} \rightarrow \rho^{0} K^{* 0}$

Mass fit

- Shapes:
- Signal: Hypatia distribution with parameters obtained from simulation. The same shape is used for B^{0} and $\mathrm{B}_{5}{ }^{0}$, except with a mass shift
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} 0 \overline{\mathrm{~K}}^{*} 0$

Full Results

Figure 4: Projections of the amplitude fit results for the $B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$ decay mode on the helicity angles (top row: $\cos \theta_{1}$ left, $\cos \theta_{2}$ centre and ϕ right) and on the two-body invariant masses (bottom row: $M\left(K^{+} \pi^{-}\right)$left and $M\left(K^{-} \pi^{+}\right)$centre). The contributing partial waves: $V V$ (dashed red), $V S$ (dashed green) and $S S$ (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line.

Figure 5: Projections of the amplitude fit results for the $B_{s}^{0} \rightarrow K^{* 0} K^{* 0}$ decay mode on the helicity angles (top row: $\cos \theta_{1}$ left, $\cos \theta_{2}$ centre and ϕ right) and on the two-body invariant masses (bottom row: $M\left(K^{+} \pi^{-}\right)$left and $M\left(K^{-} \pi^{+}\right)$centre). The contributing partial waves: $V V$ (dashed red), $V S$ (dashed green) and $S S$ (dotted grey) are shown with lines. The black points correspond to data and the overall fit is represented by the blue line.
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} 0 \overline{\mathrm{~K}}^{*} 0$

Full Results

Parameter	$B^{0} \rightarrow K^{* 0} \overline{K^{* 0}}$	$B_{s}^{0} \rightarrow K^{* 0} \overline{K^{* 0}}$	
f_{L}	$0.724 \pm 0.051 \pm 0.016$	$0.240 \pm 0.031 \pm 0.025$	
$x_{f_{\\|}}$	$0.42 \pm 0.10 \pm 0.03$	$0.307 \pm 0.031 \pm 0.010$	
$\left\|A_{S}^{-}\right\|^{2}$	$0.377 \pm 0.052 \pm 0.024$	$0.558 \pm 0.021 \pm 0.014$	
$x_{\left\|A_{S}^{+}\right\|^{2}}$	$0.013 \pm 0.027 \pm 0.011$	$0.109 \pm 0.028 \pm 0.024$	
$x_{\left\|A_{S S}\right\|^{2}}$	$0.038 \pm 0.022 \pm 0.006$	$0.222 \pm 0.025 \pm 0.031$	
$\delta_{\\|}$	$2.51 \pm 0.22 \pm 0.06$	$2.37 \pm 0.12 \pm 0.06$	
$\delta_{\perp}-\delta_{S}^{+}$	$5.44 \pm 0.86 \pm 0.22$	$4.40 \pm 0.17 \pm 0.07$	
δ_{S}^{-}	$5.11 \pm 0.13 \pm 0.04$	$1.80 \pm 0.10 \pm 0.06$	
$\delta_{S S}$	$2.88 \pm 0.35 \pm 0.13$	$0.99 \pm 0.13 \pm 0.06$	
$f_{\\|}$	$0.116 \pm 0.033 \pm 0.012$	$0.234 \pm 0.025 \pm 0.010$	
f_{\perp}	$0.160 \pm 0.044 \pm 0.012$	$0.526 \pm 0.032 \pm 0.019$	
$\left\|A_{S}^{+}\right\|^{2}$	$0.008 \pm 0.013 \pm 0.007$	$0.048 \pm 0.014 \pm 0.011$	
$\left\|A_{S S}\right\|^{2}$	$0.023 \pm 0.014 \pm 0.004$	$0.087 \pm 0.011 \pm 0.011$	
S-wave fraction	$0.408 \pm 0.050 \pm 0.017$	$0.694 \pm 0.016 \pm 0.010$	

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \overline{\mathrm{~K}}^{*} 0$

Systematic uncertainties

- Fit method
- Description of kinematic acceptance
- Resolution
- P-wave mass model
- S-wave mass model
- Differences between data and simulation
- Background subtraction
- Peaking backgrounds
- Time acceptance

Branching fraction measurement
Systematic uncertainties in the factor k
Systematic uncertainties in the signal yields
Systematic uncertainties in the efficiencies
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{O} \overline{\mathrm{K}}^{*} 0$

Systematic uncertainties

Decay mode	$B^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$									$B^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$							
Parameter	f_{L}	$x_{f_{\\|}}$	$\left\|A_{S}^{-}\right\|^{2}$	$x_{\left\|A_{s}^{+}\right\|^{2}}$	$x_{\left\|A_{S S}\right\|^{2}}$	$\delta_{\\|}$	$\delta_{\perp}-\delta_{S}^{+}$	δ_{S}^{-}	$\delta_{S S}$	$f_{\\|}$	f_{\perp}	$\left\|A_{S}^{+}\right\|^{2}$	$\left\|A_{S S}\right\|^{2}$	S-wave fraction			
Bias data-simulation	0.001	0.00	0.006	-0.001	0.004	0.01	-0.01	0.00	0.01	0.001	-0.001	-0.001	0.002	0.007			
Fit method	0.007	0.01	0.011	0.009	0.001	0.00	0.01	0.00	0.02	0.000	0.007	0.005	0.000	0.006			
Kinematic acceptance	0.005	0.01	0.006	0.004	0.002	0.03	0.12	0.01	0.04	0.003	0.004	0.001	0.003	0.006			
Resolution	0.007	0.00	0.005	0.001	0.002	0.00	0.16	0.00	0.02	0.001	0.003	0.000	0.001	0.006			
P -wave mass model	0.001	0.00	0.004	0.001	0.002	0.00	0.01	0.00	0.02	0.000	0.001	0.000	0.001	0.005			
S-wave mass model	0.007	0.01	0.016	0.003	0.002	0.03	0.03	0.03	0.02	0.000	0.007	0.002	0.002	0.008			
Differences data-simulation	0.004	0.00	0.002	0.001	0.001	0.01	0.01	0.01	0.01	0.001	0.003	0.000	0.001	0.002			
Background subtraction	0.002	0.01	0.006	0.001	0.002	0.01	0.06	0.01	0.09	0.005	0.003	0.001	0.001	0.002			
Peaking backgrounds	0.009	0.02	0.009	0.003	0.003	0.04	0.06	0.01	0.08	0.010	0.003	0.002	0.002	0.009			
Tōtal systematic unc.	$\overline{0} . \overline{0} \overline{1} \overline{6}$	${ }^{-} \overline{0} \overline{0}$	$\overline{0} \overline{0} 2 \overline{4}$	$\overline{0} . \overline{0} \overline{1} 1$	$\overline{0} 0.0 \overline{0} \overline{6}$	0.06	$0.2 \overline{2}$	$\overline{0} \overline{0} \overline{4}$	$\overline{0} . \overline{1} \overline{3}$	$\overline{0} \overline{0} \overline{1}$	0.012	0.0007	0.004	$\overline{0} . \overline{0} \overline{1} 7$			
Decay mode	$B_{s}^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$									$B_{s}^{0} \rightarrow\left(K^{+} \pi^{-}\right)\left(K^{-} \pi^{+}\right)$							
Parameter	f_{L}	$x_{f_{\\|}}$	$\left\|A_{S}^{-}\right\|^{2}$	$x_{\left\|A_{s}^{+}\right\|^{2}}$	$x_{\left\|A_{S S}\right\|^{2}}$	$\delta_{\\|}$	$\delta_{\perp}-\delta_{S}^{+}$	δ_{S}^{-}	$\delta_{S S}$	$f_{\\|}$	f_{\perp}	$\left\|A_{S}^{+}\right\|^{2}$	$\left\|A_{S S}\right\|^{2}$	S-wave fraction			
Bias data-simulation	0.004	0.003	0.007	-0.003	0.021	0.05	0.00	0.05	0.07	0.001	-0.005	-0.002	0.007	0.012			
Fit method	0.001	0.000	0.001	0.000	0.000	0.00	0.00	0.00	0.00	0.001	0.001	0.000	0.001	0.001			
Kinematic acceptance	0.011	0.006	0.011	0.021	0.009	0.05	0.07	0.05	0.05	0.005	0.009	0.010	0.004	0.004			
Resolution	0.002	0.001	0.000	0.002	0.000	0.00	0.00	0.00	0.00	0.000	0.002	0.000	0.001	0.002			
P -wave mass model	0.001	0.000	0.001	0.002	0.009	0.00	0.01	0.00	0.01	0.000	0.001	0.001	0.003	0.005			
S-wave mass model	0.021	0.001	0.007	0.011	0.028	0.03	0.02	0.03	0.02	0.006	0.016	0.004	0.009	0.006			
Differences data-simulation	0.002	0.000	0.001	0.001	0.001	0.01	0.00	0.01	0.01	0.001	0.001	0.000	0.001	0.001			
Background subtraction	0.000	0.001	0.001	0.001	0.004	0.01	0.01	0.01	0.01	0.001	0.001	0.001	0.002	0.002			
Peaking backgrounds	0.003	0.008	0.002	0.002	0.002	0.02	0.01	0.02	0.01	0.007	0.005	0.001	0.001	0.001			
Time acceptance	0.008	0.014	0.008	0.004	0.005	0.00	0.00	0.00	0.00	0.008	0.016	0.003	0.001	0.007			
Tōtal systematic unc.	$\overline{0} \cdot \overline{0} \overline{2} 5$	$\overline{0} . \overline{0} \overline{1}{ }^{-}$	-0.014	$\overline{0} . \overline{0} 24^{-}$	$\overline{0} . \overline{0} \overline{3} \overline{1}$	$0.06{ }^{-}$	$\overline{0} . \overline{7}$	${ }^{0} \overline{0} \overline{0} \bar{\square}$	$\overline{0} . \overline{0} 5$	$\overline{0} . \overline{0} 10^{-}$	0.019	0.011	0.011	$\overline{0} .0 \overline{1} 0$			

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{O} \overline{\mathrm{K}}^{*} 0$

Mass fit

- Shapes:
- Signal: Double-sided Hypatia distributions with the same parameters other than mass difference
- Mis-ID: sum of a Crystal ball and gaussian with parameters from simulations (except mean and sigma)
- Part-Reco: ARGUS function convolved with a gaussian resolution function

