

Search for new physics with the SHiP experiment at CERN

Alexander Korzenev, University of Geneva on behalf of the SHiP collaboration

> Session: Search for New Physics EPS-HEP2019 in Ghent 12/07/2019

Search for Hidden Particles (SHiP) experiment

- SHiP
- Fixed target facility at the CERN SPS (400 GeV)
- Designed to find a solution for BSM physics by searching for very weakly interacting particles
- Hidden Sector (HS) production and decay rates are strongly suppressed relative to SM: production branching ratios O(10⁻¹⁰)
- Detection of long-lived particles in the "zero background" experiment

- **2013** Expression of Interest for a new CERN SPS experiment submitted
- **2015** *Technical proposal* and description of physics case submitted
- **2016** *Recommendation* by CERN SPSC to proceed to Comprehensive Design Study
- 2018 Comprehensive design study by the *Beam Dump Facility* group published
- 2019 Comprehensive Design Report to be submitted

290 authors, 52 institutes, 17 countries

Hidden Sector (HS) under study

- Dark vectors ("Dark Photons")
 - Addition of U(1) gauge group to SM, kinetic mixing with γ and Z
 - Bremsstrahlung, light neutral meson decays, quark annihilation
- (Light) Dark Matter direct detection ("WIMPs")
 - Stable or long-lived DM that couple to EM current via A'
- Dark scalars ("Dark Higgses")
 - Neutral singlet scalers that couple to the SM Higgs field
 - Produced in penguin decays of K, D, B mesons
- Heavy neutral leptons ("sterile neutrinos")
 - Explains SM neutrino masses (seesaw), Dark Matter, Baryon Asymmetry
 - Weak semi-leptonic decays of hadrons, W, Z
- Axion-like particles ("ALPs")
 - Non-renormalizable coupling to SM, solution of the strong CP problem
 - Generalisation of the axion model in MeV-GeV mass range

Portal	Coupling to SM	
Dark Photon, \mathcal{A}'_{μ}	$\epsilon/(2\cos\theta_W) \mathcal{F}'_{\mu\nu} \mathcal{B}_{\mu\nu}$	
Dark Higgs, S	$(\mu S + \lambda S^2) \mathcal{H}^{\dagger}\mathcal{H}$	
Axion or ALP, a	$a/f_{\gamma} \cdot \mathcal{F}_{\mu\nu} \tilde{\mathcal{F}}_{\mu\nu}$, $a/f_{\gamma} \cdot \mathcal{G}_{i,\mu\nu} \tilde{\mathcal{G}}_{i}^{\mu\nu}$, $\partial a/f_{a} \cdot \overline{\psi} \gamma^{\mu} \gamma^{5} \psi$	
Sterile Neutrino, N	$\Sigma F_{\alpha I}(\overline{L}_{\alpha}H)N_{I}$	

CERN-PBC-REPORT-2018-007

Main decay modes of hidden particles in various models ($l = e, \mu$)			
Model	Final state		
Neutrino portal, SUSY neutralino	$l^{\pm}\!\pi^{\mp},l^{\pm}\!K^{\mp},l^{\pm}\!\rho^{\mp},\rho^{\pm}\rightarrow\pi^{\pm}\!\pi^{0}$		
Vector, scalar, axion portals, SUSY sgoldstino]+]-		
Vector, scalar, axion portals, SUSY sgoldstino	π ⁺ π ⁻ , K ⁺ K ⁻		
Neutrino portal ,SUSY neutralino, axino	l+l−v		
Axion portal, SUSY sgoldstino	γγ		
SUSY sgoldstino	π ⁰ π ⁰		

CERN-SPSC-2015-016

Beam Dump Facility (BDF) in the North Area of CERN SPS

New extraction tunnel for BDF (SHiP & TauFV) in the North Area

Scattering and Neutrino Detector (SND)

- Emulsion spectrometer located inside of a long dipole magnet B=1.2T
- Muon identification system downstream
- Physics goals:
 - SM physics: $u_{ au}$ cross section and magnetic
 - moment, DIS structure functions F_4 and F_5 , neutrino-induced charm production and strangeness, nuclear effects
 - Search for LDM scattering

Hidden Sector (HS) Spectrometer

- Distance from the target is a compromise between
 - HS life time and angular acceptance
 - muon induced background
- Decay volume 50m long, 1 mbar pressure
- Magnetic spectrometer downstream
- Physics goal: search for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos, vector, scalar, axion portals to the Hidden Sector, and light supersymmetric particles

BDF target bunker and magnetic shield

150cm

Inner tank

JINST 13 (2018) no.10, P10011

Tungsten core

High-Z and good performance under

irradiation

TZM core Molybdenum alloy, higher strength and recrystallisation

temperature than pure Mo

Outer tank

SPS beam

25cm

I Sussessment

Target

- Maximise production of charmed mesons
- Increase reabsorption of pions and kaons; 12 λ_I to reduce the shower leakage
- High-Z material: 42Mo and 74W

Magnetic shield

- Designed to reduce the µ flux by 6 orders of magnitude
- Assembled of Grain-Oriented (GO) steel sheets (0.3 mm thick) in sections of 5 cm thick
- Magnetic field of 1.7 T in critical magnet areas
- ~10⁵ muons/spill pass to the vacuum vessel

Prompt dose rate muons x [-60:54]

Ta cladding

to avoid corrosion/ erosion effects

Scattering and Neutrino Detector

Target detector

- Emulsion detector with trackers & time stamp
- 19 x (SciFi x ECC x CES)

Muon identification system

- 13 iron filters (10 cm thick)
- 12 RPC planes for tracking (area 2x5 m²)
- For muon momenta > 10 GeV/c

Magnet

- Warm magnet, can be open for access
- Horizontal magnetic field B=1.25 T
- Active cooling system for coil + thermal shield

SM Physics

- 3 flavours ν_e , ν_μ , ν_τ and distinguish ν and $\overline{\nu}$
- *τ* (anti)neutrino physics, N≈10⁴
- Structure functions $F_4(x,Q^2)$ and $F_5(x,Q^2)$
- Neutrino-induced charm production, strangeness
- Nuclear effects in vN DIS: shadowing, antishadowing, EMC region, Fermi motion region
- ν_{τ} magnetic moment (m_{ν} \neq 0)

HS Physics

LDM detection via scattering off electrons

Vacuum vessel and Surrounding Background Tagger

Magnetic spectrometer with particle identification

- Purpose:
 - Precise reconstruction of decay vertices
 produced by charged particles
 - Partical Identification (PID)
 - Background suppression using timing and spacial information
- Universal spectrometer to reduce the model dependence
- Vacuum volume is a continuation but not a part of the decay vessel. Other material (nonmagnetic)
- Slits for the top-load tracker station installation
- Very stiff box concept to minimise deformations

Main decay modes of hidden particles in various models ($l = e, \mu$)		
Model	Final state	
Neutrino portal, SUSY neutralino	$l^{\pm}\pi^{\mp}, l^{\pm}K^{\mp}, l^{\pm}\rho^{\mp}, \rho^{\pm} \rightarrow \pi^{\pm}\pi^{0}$	
Vector, scalar, axion portals, SUSY sgoldstino	1+1-	
Vector, scalar, axion portals, SUSY sgoldstino	π ⁺ π ⁻ , K ⁺ K ⁻	
Neutrino portal ,SUSY neutralino, axino	l+l−v	
Axion portal, SUSY sgoldstino	γγ	
SUSY sgoldstino	$\pi^0\pi^0$	

CERN-SPSC-2015-016

HS background rejection

- Efficient and redundant background suppression
- Sensitivity to many decay modes
 - Model independent search
- Signature with an insulated vertex in the decay volume of the HS spectrometer
- Contribution from the comics is negligible
- Sample of MC events assuming 100% interaction
 - interaction distributed along trajectory with weight according to the material density
 - 5 years of operation: 2 x 10²⁰ p.o.t.

Selection cut	Value	
Track momentum	> 1 GeV/c	
Distance of closest approach	< 1 cm	
Vertex position	> 5 cm from vessel wall	
Imp. Param. w.r.t. target (full reco)	< 10 cm	
Imp. Param. w.r.t. target (partial reco)	< 250 cm	

CERN-SPSC-2019-010

Muon combinatorial background (mimic vertex)

Neutrino induced background (inelastic interaction)

 $8.5 \cdot 10^{15}$ fake vertices without time info. Reduced to $4.2 \cdot 10^{-2}$ with time info (TD)

µ sweeping field

6 · 10⁴ μ/spill impinging on the decay volume.
2.1 · 10⁸ inelastic interaction in 5 years.
BG after cuts (full reco) = 2.7 · 10⁻⁵
BG after cuts (partial reco) = 6 · 10⁻⁴

Muon induced background

(inelastic interaction)

 $2 \cdot 10^{18} \nu$ from target in 5 years. $3.5 \cdot 10^7$ inelastic interaction in 5 years. BG after cuts (full reco) = 10^{-2} BG after cuts (partial reco) < 0.1 (γ conversion cut)

Heavy Neutral Leptons (HNL) below the EW scale

 $HNL \rightarrow l^{\pm}\pi^{\mp}, l^{\pm}K^{\mp}, l^{\pm}\rho^{\mp}$

 $\mathcal{L}_{vector} = \mathcal{L}_{SM} + \mathcal{L}_{DS} + \Sigma F_{\alpha I} (\overline{L_{\alpha}} H) N_{I}$

- Neutrino portal extension of the SM (vMSM)
 - motivated by the fact that it can be tightly related with the neutrino mass generation mechanism (see-saw), provide dark mater candidate and explain the baryon asymmetry
 - N₁(dark matter, ~10 keV), N_{2,3} (see-saw, baryon asymmetry, few GeV)
- Shown in figures: single-flavour dominance was assumed, e.g. HNLs couple only with one flavour of the active neutrinos at the time.

Dark Photon couple to Light DM

 $\mathcal{L}_{vector} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - \epsilon / (2\cos\theta_{W}) \mathcal{F}'_{\mu\nu} \mathcal{B}_{\mu\nu}$

- The SM is augmented by a single new state $\ensuremath{\mathcal{R}}'$
- DM is assumed to be either heavy or contained in a different sector

 $\mathcal{L}_{\mathcal{D}S} = -1/4 \ (\mathcal{F}'_{\mu\nu})^2 + 1/2 \ m_{\mathcal{A}'}^2 (\mathcal{A}'_{\mu})^2 + l (\partial_{\mu} + i g_{\mathcal{D}} \mathcal{A}'_{\mu}) \chi l^2 + \dots$

- Model where minimally coupled viable WIMP dark
 matter model can be constructed
- The parameter space for this model is: $\{m_{A'}, \epsilon, m_{\chi}, \alpha_D\}$
 - $m(A')=3m(\chi), \alpha(D)=0.1$

 10^{-2}

Dark Scalar coupled to the Higgs

$$ALP \rightarrow \gamma \gamma$$

 10^{-1}

$$\mathcal{L}_{axion} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - a/(4f_{\gamma}) \mathcal{F}_{\mu\nu} \tilde{\mathcal{F}}_{\mu\nu} + \dots$$

- Axion = Pseudo-Nambu Goldstone Boson associated to Peccei-Quinn symmetry, a global U(1), introduced to address the Strong QCD problem. Vast range of masses and couplings possible, with fixed relation.
- Axion-Like Particle (ALP): a generalised version of the axion (at the cost of the original motivation from the strong CP problem). No direct relation between coupling and mass.
- Interest to explore the MeV-GeV region at acceleratorbased experiments

$$S \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \dots$$

$$\mathcal{L}_{scalar} = \mathcal{L}_{SM} + \mathcal{L}_{DS} - (\mu S + \lambda S^2) \mathcal{H}^{\dagger} \mathcal{H}$$

- The minimal scalar portal model operates with one extra singlet field S and two types of couplings, μ and λ
- Benchmark 4: assume $\lambda=0$

m_{ALP}¹ (GeV)

Conclusions and outlook

- Explore the intensity frontier in the framework of study of new physics PBC-BSM
- New infrastructure in the North Area of CERN SPS: extraction tunnel, target complex, experimental area
- Detector concept:
 - Beam Dump Facility: average beam power 355 kW, 2.6 MW during the spill
 - Active muon shield: muon flux reduction by 10⁶
 - Scattering and Neutrino Detector: emulsions + magnetic spectrometer
 - LDM scattering; SM neutrino physics: ν_{τ} study, magnetic moment, induced charm production, nuclear effects, strangeness
 - Hidden Sector spectrometer: 50 m decay volume + magnetic spectrometer
 - Direct search for very weakly interacting long lived particles: Heavy Neutral Leptons, vector, scalar, axion portals to the Hidden Sector, and light SUSY particles
- Comprehensive Design Report (CDR) at the end of 2019
- Preparation of the Technical Design Report (TDR) by the end of 2022
 - Final detector cost and schedule of the experiment
- 3 years to complete detector R&D, prototyping and validation
- ~6 years for the construction of BDF, detector production, installation, commissioning
- Data-taking for the LHC Run 4 and Run 5

Global project schedule for the Beam Dump Facility and the SHiP detector (CERN-SPSC-2019-010)

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026 2027
LHC	Run 2	LS2	Run 3	LS3 Run 4
SPS				SPS stop NA stop
SHIP / BDF	Comprehensive design & 1st	prototyping /// Design an	nd prototyping Production	n / Construction / Installation
Milestones	TP	CDS ESPP	TDR	Cw8

backup

Experimental technique for the HS direct search (signal $\propto e^4$)

Experimental area of SHiP in the North Area of CERN

- 120 m long and 20 m wide underground experimental hall at a depth of ~15 m
- Minimising the background induced by muon and neutrino interactions with material
 - no infrastructure systems on the sides of the detector along the entire length

Magnetic spectrometer: tracking system

Dipole magnet

• Rectangular aperture 5 x 10 m²

TTIN RECEIPTION

- Warm AI coils is a baseline option
- Field integral along the central axis 0.5 Tm
- Superconducting option is under consideration
- Particle bending plane is vertical
- Yoke provides stiffening support for the vacuum tank
- Total mass (yoke+6 coil packs) 1155 tones
- Power dissipation 1.1 MW

- 4 identical stations:
 - Oriented horizontally
 - Each station has U-Y-Y-V projections
- Each station assembled outside, to be loaded from top
- Diameter 20 mm
- 36 µm thick PET film coated with 50 nm Cu and 20 nm Au
- Procedure is established during mass production in JINR/Dubna for NA62
- Pressure=1bar, 70% Ar / 30% CO₂
- Start time is taken from the Timing Detector (downstream)
- Spacial resolution 120 μm
- Sagging effect will be reduced by
 - long-stock constant force spring for wire
 - suspension mechanism based on carbon fibres
- Front-end electronics located inside the vacuum and will require active cooling

Magnetic spectrometer: Timing Detector(s)

- Purpose: reduction of *combinatorial background* by tagging particle belonging to a single event
- Active surface: 5 x 10 m². Required time resolution <100 ps

Cast Plastic Scintillator

 $6 \times 6 mm^2$ each Two side readout

Plastic EJ-200 Attenuation ~4 m Bar dimensions: 168 x 6 x 1 cm³

Time resolut. ~85 ps Eff_{plastic}=100% Deadtime defined by electronics

Full detector: 182 row x 3 column 564 bars

Timing Resistive Plate Chamber

0.3 mm gas gap 12 gas gaps Strips in the middle Strip 3 cm wide Two-end readout Area 1.6 x 1.2 m²

Full detector: 7 row x 5 column 35 modules

Magnetic spectrometer: particle identification

- Active area 6 x 12 m²
- 4 identical active layers
- 3 iron walls with thickness of 60 cm $(3.4\lambda_I)$
- Two technologies:
 - Extruded plastic scintillator bars with WLS fibre and SiPM readout, δt~800 ps
 - Cast plastic scintillator *tiles* with direct SiPM readout, δt~300 ps
- Scintillator weight 11.5 ton
- Iron weight 1000 ton

Scattering and Neutrino Detector (2)

Two types of emulsion technology

- Emulsion Cloud Chamber (ECC)
 - 57 films interleaved with 1 mm Pb
 - thickness 8 cm, 10X₀, 100 kg
 - replaced twice a year
- Compact Emulsion Spectrometer (CES)
 - 3 films interleaved with 2 layers of low density material
 - 10 kg
 - replaced every 2 weeks
- Transverse dimensions
 - 80x80 cm² assembled of 2x2 cells

Target & Downstream Trackers

- Time stamp for tracks reconstructed in emulsion => connection to downstream trackers
- Time resolution requited <10 ns
- Transverse size: 80x120 cm²
- Two technologies developed in LHCb:
 - μ-RWELL (Micro-Patern Gaseous Detector)
 - Scintillating Fiber (SciFi) Tracker
- Spacial resolution ~40 µm
- Projections XY(UV)

SM neutrino physics in SND (1)

- ν_{τ} and $\overline{\nu}_{\tau}$ produced in the leptonic decay D_{s}^{\pm} mesons
- Number of v_{T} and \bar{v}_{T} produced in the beam dump

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_{p} \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_{s}} Br(D_{s} \to \tau) = 2.85 \cdot 10^{-5} N_{p}$$

- ν_{τ} in previous experiments: DONUT (9), OPERA (4)
- Unique capability in SHiP to detect all 3 flavours ν_e , ν_μ , ν_τ and distinguish ν and $\overline{\nu}$
 - CC channel to identify the flavour via lepton
 - Electrons shower in emulsion before their charge can be measured
 - Momentum either via bending in magnetic field or via Multiple Coulomb Scattering (used in OPERA)
 - Impact parameter to reconstruct the ν_{τ} vertex (resolution ~µm)

Expected number of CC DIS interactions in SND			
	<e>[GeV]</e>	N interactions	
N _v e	59	1.1 · 10 ⁶	
$N_{\mathbf{\nu}\mu}$	42	2.7 · 10 ⁶	
N _{ντ}	52	3.2 · 104	
N _⊽ e	46	2.6 · 10 ⁵	
$N_{\overline{\nu}\mu}$	36	6.0·10 ⁵	
Ν _{ν̄τ} 70		2.1 · 10 ⁴	

Expected number of observed ν_{τ} and $\overline{\nu}_{\tau}$			
channel	$ u_{ au}$	$\overline{ u}_{ au}$	
$ au ightarrow \mu$	1.2·10 ³	1 · 10 ³	
au ightarrow h	4 · 10³	3 · 10³	
τ→3h	1 · 10 ³	0.7 · 10 ³	

• efficiencies were taken into account

SM neutrino physics in SND (2)

- Access to structure functions $F_4(x,Q^2)$ and $F_5(x,Q^2)$ in DIS CC interactions
- Suppressed by the lepton mass squared m_{l^2}
- Albright-Jarlskog relations: $F_4=0$, $F_5=F_2/(2x)$

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5 \right) \end{aligned}$$

- Neutrino induced charm production
- Expected charm yield exceeds the statistics available in previous experiments by more than one order of magnitude
 - 2013 charm ν_{μ} and 32 charm $\overline{\nu}_{\mu}$ events in CHORUS
- Search for pentaquark Θ_{c^0} with charm quark content

Expected number of CC DIS interaction with charm production			
	<e>[GeV]</e>	# interactions	fraction [%]
$N_{m{ u}\mu}$	55	1.3·10 ⁵	4.7
N _v e	66	6.0·10 ⁴	5.7
$N_{\overline{\nu}\mu}$	49	2.5·10 ⁴	4.2
N _{ve}	57	1.3·10 ⁴	5.1
total		2.3·10 ⁵	

SM neutrino physics in SND (3)

- Nuclear effects in vN DIS: shadowing, antishadowing, EMC region, Fermi motion region
- Different from charged lepton interaction: slight tension in global fit between $F_2 \nu N$ and $F_2 l \pm N$

- Flavour decomposition: unique way to access strange quark PDFs
 Statistics of expected of ν_μ events is comparable
- to NuTeV/CCFR
 - lower cut on μ momentum in SHiP (5 GeV/c in NuTeV/CCFR)

- ν_{τ} magnetic moment (m_{ν} \neq 0)
 - Extra components to the ν_{τ} cross section
 - Measured so far: $\mu_{\nu e} < 1.9 \cdot 10^{-11} \mu_B$ and $\mu_{\nu \mu} < 6.9 \cdot 10^{-10} \mu_B$

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\sqrt{2}\pi^2} = 3.2 \cdot 10^{-19} \left(\frac{m_{\nu}}{1 \, eV}\right) \mu_B$$

- Larger magnetic moment will be a sign of new physics
- The region down to $\mu_{\nu\tau} = 1.3 \cdot 10^{-7} \mu_{\rm B}$ can be explored

0.4

Neutrino Background in SHiP

How do we simulate the Neutrino Background in SHiP? A precise estimation of neutrino background is crucial for us We use a specific neutrino event generator GENIE as a mediator between Pythia8 and GEANT4 to simulate neutrino interactions.

