Rare charm decays at LHCb

Dominik Mitzel¹ on behalf of the LHCb collaboration

¹CERN

EPS-HEP Ghent, Belgium 11 July 2019

Why rare charm decays?

Promising to search for NP...

- rare charm decays involve FCNC c→u transitions at short distances (SD)
 - in SM only at loop level
- some NP models predict large enhancement in rates and asymmetries [PRD 83 114006 (2011)] [PRD 98 035041 (2018)]
- one of few occasions to investigate up-type quark FCNCs

...but also very challenging!

- SM short-distance contribution highly CKM & GIM suppressed
 - inclusive SM $D \rightarrow X\mu^+\mu^- \leq O(10^{-9})$
- processes dominated by long distance (LD) (tree-level) dynamics, shielding the FCNC processes
- theoretical description very hard

[PRD 98 035041 (2018)]

How to search for BSM physics?

Search for the rare decay $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ PRD 97, 091101 (2018)

4

Search for the rare decay $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ PRD 97, 091101 (2018)

- first measurement of rare decays of charmed baryons at LHCb
 - total BF dominated by resonant LD contributions:
 - $\Lambda_c^+ \rightarrow p \Phi(\rightarrow \mu^+ \mu^-)$
 - $\Lambda_c^+ \rightarrow p \rho / \omega (\rightarrow \mu^+ \mu^-)$
 - sensitivity to SD physics away from resonances in dimuon mass

LHCb analysis strategy

- define three dimuon mass regions: Φ , ρ/ω and non-resonant (NR)
 - measurement/limit of the BF in ρ/ω and NR region relative to $\Lambda_c^+ \rightarrow p\Phi(\rightarrow \mu^+\mu^-)$
- full Run 1 data (3/fb)

Search for the rare decay $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ PRD 97, 091101 (2018)

• upper limit on non-resonant component

$$\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 9.6 \times 10^{-8} \text{ at } 95\% \text{ CL}$$

- ~1000x better than previous result from BaBar [PRD 84 072006 (2011)]
- first observation of Λ_c+→pµ+µ- in the p/ω region of the dimuon mass spectrum

$$\mathcal{B}(\Lambda_c^+ \to p[\mu^+\mu^-]_{\rho/\omega}) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \times 10^{-8}$$

 uncertainties are statistical, systematic and due to the BF of normalization mode

Study of rare four-body D⁰→h⁺h⁻μ⁺μ⁻ decays (h=π,K)

7

PRL 119 181805 (2017), PRL 121 091801 (2018)

The richness of $D^0{\rightarrow} h^+h^-\mu^+\mu^-$ decays

 overwhelming contribution from LD amplitudes proceeding through intermediate vector resonances screening the SD physics

- first step: BF measurement (binned in dimuon mass and total BF)
 - (limited) sensitivity to **SD** contribution in regions away from resonances

• total BF:
$$\mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$$

 $\mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

[PRL 119 181805 (2017)]

- **second step:** measure asymmetries with sensitivity to **SD** in full range
 - O(few%) predictions for some NP models [JHEP 1304 135 (2013), PRD 87 054026 (2013)]

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 121 091801 (2018)

- for the first time, measurements of angular and CP asymmetries in these decays
 - conceptual new and complementary to BF measurements
- asymmetries are sensitive to SD in full range due to SD-LD interference
 - observables are SM null tests
 - O(few%) predictions for some NP models [JHEP 1304 135 (2013), PRD 87 054026 (2013), PRD 93, 074001 (2016), PRD 98, 035041 (2018)]

angular asymmetries

forward backward asymmetry

 $A_{\rm FB} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)}$

• triple product asymmetry

 $A_{2\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)}$

• CP asymmetry

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$
9

[PRD 98, 035041 (2018)]

Asymmetries in D⁰ \rightarrow $\pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 121 091801 (2018)

Measurement strategy

- measure A_{FB} , A_{Φ} and A_{CP} binned and integrated in dimuon mass
- select D⁰ from flavour sepecific $D^{*+} \rightarrow D^0\pi^+$ decays
- 5/fb recorded 2011-2016

	$m(\mu^+\mu^-) [\text{MeV}/c^2]$							
Decay mode	low mass	mass $\eta \qquad \rho/\omega$		ϕ		high mass	NA = not available	
$D^0 \to K^+ K^- \mu^+ \mu^-$	< 525	NS	> 565		NA		NA	NS = no signal
$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	< 525	NS	565-780	780-950	950-1020	1020-1100	NS	

- total yields
 - D⁰→π+π-μ+μ-: 1.1k
 - D⁰→K+K-µ+µ-: 110
- sensitivity on asymmetries of a few %

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 121 091801 (2018)

Efficiency correction

- efficiency across phase space sculpted due to kinematical cuts in selection/reconstruction. This can cause a bias!
- exploit MVA techniques to correct for efficiency variation
 - train a BDT using the samples of simulated decays before and after selection
 - input: $|\cos(\theta_{\mu})|$, $|\cos(\theta_{H})|$, $m(\mu^{+}\mu^{-})$ and $m(h^{+}h^{-})$
 - 4D problem reduced to a one dimensional variable
- assign per-event weights as function of reweighter output
- perform fit to efficiency corrected candidates to determine asymmetries

Asymmetries in $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 121 091801 (2018)

Total asymmetries

$$A_{CP}(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) = (4.9 \pm 3.8 \pm 0.7)\%,$$

$$A_{FB}(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) = (3.3 \pm 3.7 \pm 0.6)\%,$$

$$A_{2\phi}(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) = (-0.6 \pm 3.7 \pm 0.6)\%,$$

$$A_{CP}(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) = (0 \pm 11 \pm 1)\%,$$

$$A_{FB}(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) = (0 \pm 11 \pm 2)\%,$$

$$A_{2\phi}(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) = (9 \pm 11 \pm 1)\%$$

uncertainties are statistical and systematic

- all asymmetries consistent with zero
- **no dependency** on dimuon mass observed (also true for $D^0 \rightarrow K^+K^-\mu^+\mu^-$)

What comes next?

Conclusions

- the low SM rates make the field a perfect place to look for physics beyond the SM
 - for many decay modes the SM predictions are way below current experimental sensitivities
- LHCb is making major contributions
 - most measurements report world's best result
 - we hold the record for the rarest charm decays to date...
 - ...and even measured asymmetries in these decays!
 - new analyses and updates will come exploring the full Run 2 data set

Thank you

15

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 119 181805 (2017)

Experimental details

- data: 2/fb from 2012
- normalization channel: $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$
- strategy: measure BF binned and integrated in dimuon mass
- D⁰→π⁻π⁺μ⁺μ⁻

D⁰→K⁻K⁺μ⁺μ⁻

Observation of $D^0 \rightarrow \pi^+\pi^-(K^+K^-)\mu^+\mu^-$ PRL 119 181805 (2017)

$dB/dm [10^{-10} c^2/MeV]$ **Binned measurement** LHCb 30 F $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ 25 $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ 20 \mathcal{B} [10⁻⁸] $\mu^+\mu^-$ region $[MeV/c^2]$.л+µ+ш-п⊂ 15 < 525 $7.8 \pm 1.9 \pm 0.5 \pm 0.8$ Low mass < 2.4 (2.8) at 90%(95%) CL 525-565 10 UL@95% η ρ^0/ω^0 $40.6 \pm 3.3 \pm 2.1 \pm 4.1$ 565-950 950-1100 $45.4 \pm 2.9 \pm 2.5 \pm 4.5$ ϕ 500 1000 High mass > 1100 < 2.8 (3.3) at 90%(95%) CL dB/dm [10⁻¹⁰ c^2/MeV] 4.5 $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ LHCb $D^0 \rightarrow K^+\mu^+\mu^ D^0 \rightarrow K^+ K^- \mu^+ \mu^ \mu^+\mu^-$ region $\mathcal{B}[10^{-8}]$ $[MeV/c^{2}]$ 3.5 < 525 $2.6 \pm 1.2 \pm 0.2 \pm 0.3$ Low mass UL@95% < 0.7 (0.8) at 90%(95%) CL 525-565 η ho^0/ω^0 $12.0 \pm 2.3 \pm 0.7 \pm 1.2$ > 5650.5 **Total branching fraction**

$$\mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$$

$$\mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$$

uncertainties are statistical, systematic and due to the BF of normalization mode 17

7