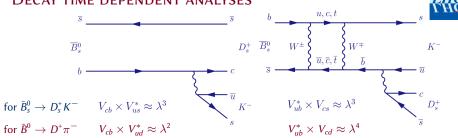
Time-dependent CP violation measurements from beauty to open charm decays

Sevda Esen on behalf of LHCb collaboration

> EPS-HEP Conference 2019 July 10-17 Ghent, Belgium

Nikhef


©2019 Dalí

B TO OPEN CHARM DECAYS

- Wide variety of measurements possible using decay time dependent analyses
 - ϕ_s from $B_s \rightarrow D_s^+ D_s^-$ [PRL 113, 211801]
 - Penguin pollution constraint on $sin(2\beta)$ from $B \rightarrow D^+D^-$ [PRL 117, 261801]
 - $B_s \bar{B}_s$ mixing frequency from $B_s \rightarrow D_s^- \pi^+$ [NJP 15 (2013) 053021]
 - γ from $B_s \rightarrow D_s^- K^+$ and $B \rightarrow D^- \pi^+$ [JHEP 06 (2018) 084, JHEP 03 (2018) 059]
 - No CP violation in decay, unlike time-independent measurements
 - Interference of decays with and without mixing
 - Need to resolve oscillations
- Presenting results using 3fb⁻¹ of run 1 data

DECAY TIME DEPENDENT ANALYSES

Sensitive to
$$\gamma - 2\beta_s (\bar{B}^0_s \to D^+_s K^-)$$
 or $\gamma + 2\beta (\bar{B}^0 \to D^+ \pi^-)$

- Small yields (6k in run I)
- $D_s^+ \to K^+ K^- \pi^+, K^- \pi^+ \pi^-, \pi^+ \pi^- \pi^+$
- More difficult backgrounds
- $\Delta M_s = (17.75 \pm 0.02) p s^{-1}$
- $\Delta \Gamma_s = (0.088 \pm 0.006) ps^{-1}$
- Large interference effects

- Large yields (480k in run I)
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- Clean signal
- $\Delta M_d = (0.507 \pm 0.002) ps^{-1}$
- Negligible $\Delta \Gamma_d$
- Small interference effects

DECAY TIME FORMALISM

$$\begin{aligned} \frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 (1+|\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + \underline{A_f^{\Delta\Gamma}} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ &+ C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\bar{B}_s^0 \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1+|\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + \underline{A_f^{\Delta\Gamma}} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right], \\ &- C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right], \end{aligned}$$

$$C_f = \frac{1 - r_{D_s K}^2}{1 + r_{D_s K}^2},$$

Assuming no CPV in mixing or decay: $r_{D_sK} \sim 0.4$

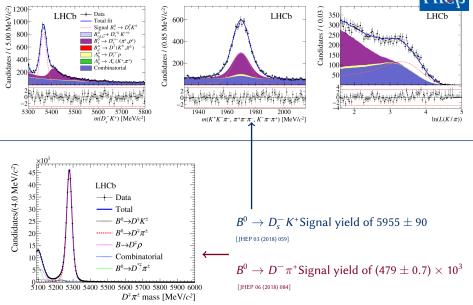
$$\begin{split} A_{f}^{\Delta\Gamma} &= \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad A_{\overline{f}}^{\Delta\Gamma} &= \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \\ S_{f} &= \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}, \quad S_{\overline{f}} &= \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}}. \end{split}$$

DECAY TIME FORMALISM

$$\begin{split} \frac{\mathrm{d}\Gamma_{\mathbf{B}^{0} \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_{f}|^{2} (1 + |\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right. \\ &+ \pm 1 \cos\left(\Delta \mathbf{m}_{g}t\right) - S_{f} \sin\left(\Delta \mathbf{m}_{g}t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\mathbf{B}^{0} \to f}(t)}{\mathrm{d}t} &= \frac{1}{2} |A_{f}|^{2} \left| \frac{p}{q} \right|^{2} (1 + |\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right. \\ &- \pm 1 \cos\left(\Delta \mathbf{m}_{g}t\right) + S_{f} \sin\left(\Delta \mathbf{m}_{g}t\right) \right], \end{split}$$

$$\begin{split} r_{D\pi} &= \tan \theta_c \frac{f_{D^+}}{f_{D_s}} \sqrt{\frac{\mathcal{B}(B^0 \to D_s^+ \pi^-)}{\mathcal{B}(B^0 \to D^- \pi^+)}} = 0.0182 \pm 0.0012 \pm 0.0036 (SU(3)) \\ & \text{[JHEP 06 (2018) 084]} \end{split}$$

$$C_f &= \frac{1 - r_{D\pi}^2}{1 + r_{D\pi}^2} = -C_{\bar{f}}, \quad \Rightarrow \text{ no sensitivity } C_f = 1$$

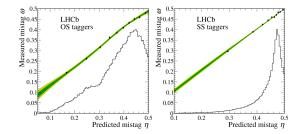

$$S_f &= -\frac{2r_{D\pi} \sin \left[\delta - (2\beta + \gamma)\right]}{1 + r_{D\pi}^2},$$

$$S_{\bar{f}} &= \frac{2r_{D\pi} \sin \left[\delta + (2\beta + \gamma)\right]}{1 + r_{D\pi}^2},$$

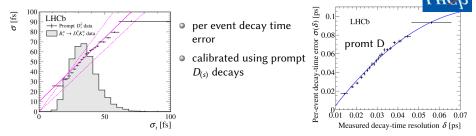
SIGNAL MASS FITS

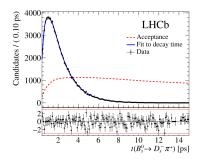
I.HC

$B_s^0 \rightarrow D_s^- \pi^+$	$\varepsilon_{\mathrm{tag}}$ [%]	$\varepsilon_{\mathrm{eff}}$ [%]
OS only	12.94 ± 0.11	1.41 ± 0.11
SS only	39.70 ± 0.16	1.29 ± 0.13
Both OS and SS	24.21 ± 0.14	3.10 ± 0.18
Total	76.85 ± 0.24	5.80 ± 0.25


• Calibration using $B_s^0
ightarrow D_s^- \pi^+$

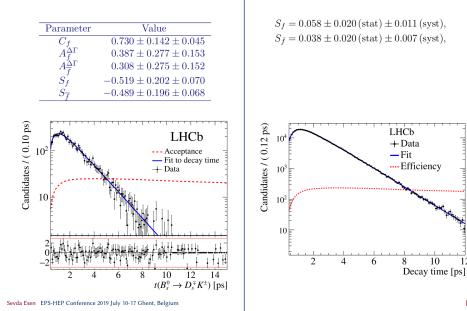
•
$$\epsilon_{eff} = \epsilon_{tag}(1 - 2 < \omega >)^2$$


• $B^0 \rightarrow D^- \pi^+$: self tagging calibration ($C_f = 1$)


Tagging efficiency of ~ 85%
 79% SS, 37% OS, 31% both

• $\epsilon_{eff} = (5.59 \pm 0.01)\%$

DECAY TIME ACCEPTANCE AND RESOLUTION [JHEP 06 (2018) 084. JHE LHCD


- Use known $B_{(s)} \rightarrow D_{(s)}^- \pi^+$ lifetime
- For $B_s \to D_s^- K^+$ correct for $D_s \pi/D_s K$ differences with simulation

FIT RESULTS AND SYSTEMATICS [JHEP 06 (2018) 084, JHEP 03 (2018) 059]

 $B^0 \rightarrow D^- \pi^+$

 $B_s \rightarrow D_s^- K^+$

(9)

12

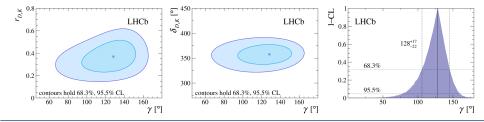
FIT RESULTS AND SYSTEMATICS [JHEP 06 (2018) 084, JHEP 03 (2018) 059]

 $B_s \rightarrow D_s^- K^+$

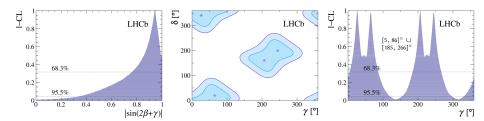
Parameter	Value		
C_f	$0.730 \pm 0.142 \pm 0.045$		
$A_f^{\Delta\Gamma}$	$0.387 \pm 0.277 \pm 0.153$		
$A_{\overline{f}}^{\Delta\Gamma}$	$0.308 \pm 0.275 \pm 0.152$		
$S_{f}^{'}$	$-0.519 \pm 0.202 \pm 0.070$		
$S_{\overline{f}}$	$-0.489 \pm 0.196 \pm 0.068$		

Source	C_f	$A_f^{\Delta\Gamma}$	$A_{\overline{f}}^{\Delta\Gamma}$	S_f	$S_{\overline{f}}$
Detection asymmetry	0.02	0.28	0.29	0.02	0.02
Δm_s	0.11	0.02	0.02	0.20	0.20
Tagging and scale factor	0.18	0.02	0.02	0.16	0.18
Tagging asymmetry	0.02	0.00	0.00	0.02	0.02
Correlation among observables	0.20	0.38	0.38	0.20	0.18
Closure test	0.13	0.19	0.19	0.12	0.12
Acceptance, simulation ratio	0.01	0.10	0.10	0.01	0.01
Acceptance data fit, Γ_s , $\Delta\Gamma_s$	0.01	0.18	0.17	0.00	0.00
Total	0.32	0.55	0.55	0.35	0.35

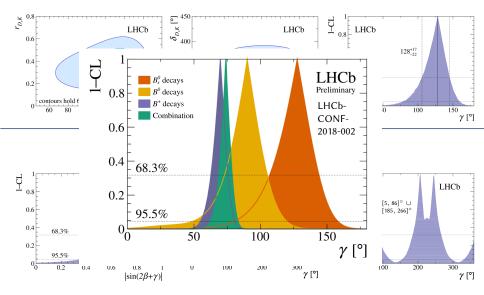
$B^0 ightarrow D^- \pi^+$


$$\begin{split} S_f &= 0.058 \pm 0.020 \, (\text{stat}) \pm 0.011 \, (\text{syst}), \\ S_{\bar{f}} &= 0.038 \pm 0.020 \, (\text{stat}) \pm 0.007 \, (\text{syst}), \end{split}$$

Source	S_f	$S_{\bar{f}}$
uncertainty of Δm	0.0073	0.0061
fit biases	0.0068	0.0018
background subtraction	0.0042	0.0023
PID efficiencies	0.0008	0.0008
flavour-tagging models	0.0011	0.0015
flavour-tagging efficiency asymmetries	0.0012	0.0015
$\epsilon(t)$ model	0.0007	0.0007
assumption on $\Delta\Gamma$	0.0007	0.0007
decay-time resolution	0.0012	0.0008
assumption on C	0.0006	0.0006
total	0.0111	0.0073
statistical uncertainty	0.0198	0.0199


Constraints on γ

 $B_s \rightarrow D_s^- K^+$ [JHEP 03 (2018) 059]


 $B \to D^{-}\pi^{+}$ [JHEP 06 (2018) 084]

Constraints on γ

 $B_s \rightarrow D_s^- K^+$ [JHEP 03 (2018) 059]

PROSPECTS [LHCB-PUB-2018-009]

- Results shown with run 1 data (3fb⁻¹)
- Analyses with run 2 data (6fb⁻¹) ongoing
- With LHCb upgrade 2, we can reach 1° sensitivity for γ with $B_s \rightarrow D_s^- K^+$

	$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$				$B^0 \rightarrow D^{\mp} \pi^{\pm}$			
Parameters	$\operatorname{Run}1$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$	
$S_f, S_{\bar{f}}$	0.20	0.043	0.027	0.011	0.02	0.0041	0.0026	0.0010
$S_f, S_{\bar{f}} \ A_f^{\Delta\Gamma}, A_{\bar{f}}^{\Delta\Gamma}$	0.28	0.065	0.039	0.016	-	-	-	
C_f	0.14	0.030	0.017	0.007	-	-	-	

- More decay modes such as B_s → D_sKππ
 ... also with exited charm states D^{*}_s and D^{*}
- Belle 2 will start contributing soon .. not with *B_s* decays

BACKUP