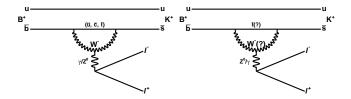


Measurement of Lepton Flavor Universality in B decays at Belle

S. Choudhury for the Belle collaboration

IIT Hyderabad, India

July 12 2019


Test of LFU (R_{κ}^{*}) in $B \to K^{*}\ell\ell$ decays [Belle, arXiv: 1904.02440]

Test of LFU (R_K) in $B \to K\ell\ell$ decays [New] [Conference paper to come] (Preliminary)

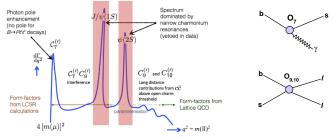
Isospin asymmetry (A_l) in $B \rightarrow K\ell\ell$ decays [New] [Conference paper to come] (Preliminary)

Introduction

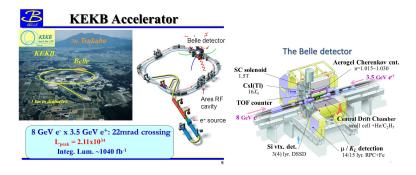
The rare decay B → K^(*)ℓℓ involves b → s quark level transition, which are flavor changing neutral currents (FCNCs). These processes occur through penguin loop and box diagrams in standard model (SM).

- Global analysis of B decays hints at lepton flavor non universality.
- These decays are highly suppressed and very small BR (\mathcal{O} (10⁻⁷)).
- These decays are very sensitive to new physics (NP).

New physics can contribute by:


- enhancing or suppressing decay rates.
- modifying the angular distribution of the final state particles.

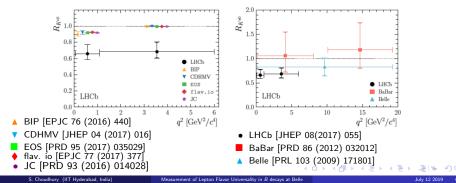
Introduction


• The amplitude of a hadron decay process [arXiv: hep-ph/9806471] is described as:

$$\begin{split} A(M \to F) &= \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | O_i(\mu) | M \rangle \\ & \underset{\text{couplings}}{\overset{\text{CKM}}{\text{couplings}}} \overset{\text{Wilson}}{\underset{\text{couplings}}{\overset{\text{Cefficients}}{\text{couplings}}} \underset{\substack{\text{Elements}}{\overset{\text{Hadronic Matrix}}{\text{Elements}}}{\overset{\text{Hadronic Matrix}}{\text{Elements}}} \\ & \text{Wilson coefficients } C_i = \overset{\text{Perturbative short distance effects}}{\overset{\text{Operators}}{\text{operators}}} O_i = \text{non-perturbative long distance effects.} \\ & i = 7 : \text{Photon penguin} \\ & i = 9, 10 : \text{Electoweak penguin} \end{split}$$

• NP can affect SM operator contributions (Wilson coefficients) and/or enter through new operators.

• Contribution of C_7 , C_9 and C_{10} depends on q^2 (invariant mass square of two leptons).


- The Belle experiment is located at the KEKB accelerator in Tsukuba, Japan.
- Data taking from 1999 to 2010.
- Data collected: 711 fb⁻¹ = 772 million $B\bar{B}$ pairs.

$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow Bar{B}$$

▶ < 문 ▶ < 문 ▶</p>

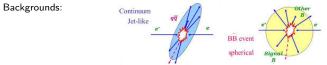
Test of LFU (R_{κ}^*) for $B \to K^* \ell \ell$

- LHCb measurement of $R_{K^*} = \frac{BR(B \to K^* \mu^+ \mu^-)}{BR(B \to K^* e^+ e^-)}$ shows deviations from SM expectation. $R_{K^*}(0.045 < q^2 < 1.1 \text{ GeV}^2/c^4) = 0.66^{+0.11}_{-0.07} \pm 0.03$ $R_{K^*}(1.1 < q^2 < 6 \text{ GeV}^2/c^4) = 0.69^{+0.11}_{-0.07} \pm 0.05$
- Compatibility with the SM estimated to be at the level of $2.1 2.3\sigma$ for low q^2 and $2.4 2.5\sigma$ at central q^2 for a data sample of 3fb^{-1} .
- Belle [605 fb⁻¹] measurement for whole q^2 region, $R_{K^*} = 0.83 \pm 0.17 \pm 0.08$, is consistent with SM prediction.
- BaBar measured for low and high q^2 bins and are consistent with SM with large uncertainty.

Test of LFU (R_{K^*}) in $B \to K^* \ell \ell$ decays at Belle [arXiv: 1904.02440]

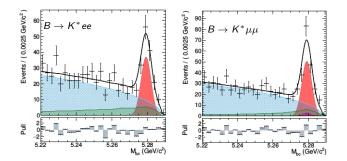
- R_{K^*} measurement with 711 fb⁻¹ data sample for different q^2 bins.
- The channels reconstructed for analysis are

$$egin{array}{lll} B^0 & o K^{*0} \mu^+ \mu^-, \ B^+ & o K^{*+} \mu^+ \mu^- \ B^0 & o K^{*0} e^+ e^-, \ B^+ & o K^{*+} e^+ e^- \end{array}$$

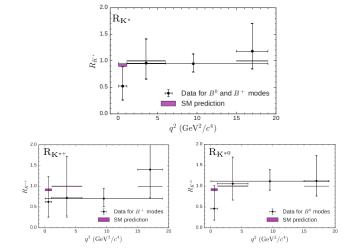

• *K*^{*} is reconstructed from:

$$\begin{array}{l} K^{*0} \rightarrow K^{+}\pi^{-} \\ K^{*+} \rightarrow K^{+}\pi^{0} \\ K^{*+} \rightarrow K^{0}_{S}\pi^{+} \end{array}$$

- Multivariate analysis technique (NN) is used to identify each particle type in the decay chain.
- Kinematic variables which distinguish signal from background are


$$M_{
m bc} = \sqrt{E_{beam}^2/c^4 - |p_B|^2/c^4} \Delta E = E_B - E_{beam}$$

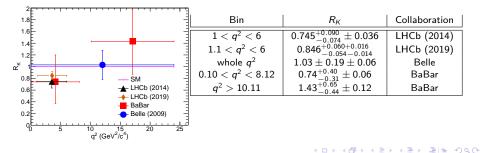
• Requirment on kinematic variables: 5.22 $< M_{\rm bc} < 5.30~{\rm GeV}/c^2$ and $-0.10~(-0.05) < \Delta E < 0.05~{\rm GeV}$ for ee($\mu\mu$)



NN is used to suppress the backgrounds.

- Perfomed extended maximum likelihood fit in $M_{\rm bc}$ to extract the signal.
- Example fit for $q^2 > 0.045 \text{ GeV}^2/c^4$.
- $103.0^{+13.4}_{-12.7}$ and $139.9^{+16.0}_{-15.4}$ events for electron and muon modes, respectively.

R^{*}_{*K*} Results [arXiv: 1904.02440]



- First measurement of $R_{K^{*+}}$.
- All results are found to be compatible with SM prediction.

▶ < E > < E >

Test of LFU (R_{κ}) for $B \to K \ell \ell$

- SM prediction is very accurate. $R_{K}^{(SM)} = 1 \pm \mathcal{O} \ (10^{-2})$
- LHCb [PRL 113, 151601(2014)] shows deviation from SM $R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$ in $q^{2} = [1 - 6] \text{ GeV}^{2}/c^{4} : 2.6\sigma$ tension for 3 fb^{-1} data sample (2011-12 data).
- LHCb [arXiv: 1903.09252] shows $R_{K}([1.1-6]) = 0.846^{+0.016}_{-0.054} + 0.060_{-0.014}, 2.5\sigma$ deviation for 5 fb⁻¹ data sample (2011 2016 data).
- The value of R_K for Belle [arXiv: 0904.0770] was consistent with unity within the uncertainty limit measured for a data sample of 605fb^{-1} .

Introduction

- This measurement of R_K is with Belle full data sample of 711 fb⁻¹, while the previous measurement was with 605 fb⁻¹.
- We perform a multi-dimensional fit using $M_{\rm bc}$, ΔE and background suppression variable to extract the signal yield.
- We calibrate the signal component with $B \rightarrow KJ/\psi$ sample and continuum $(e^+e^- \rightarrow q\bar{q})$ background with off-resonance data sample.

Particle Selection Criteria

- The decay mode reconstructed are $B^+ \to K^+ \ell \ell$ and $B^0 \to K^0_S \ell \ell$, where $\ell \ell = \mu \mu$ or ee.
- K[±], μ[±] and e[±] particles satisfying PID are selected from tracks near IP. K^o_S are selected using K^o_S displaced vertex properties and with a mass window, 3σ about K^o_S nominal mass.
- The requirement on kinematic variables are

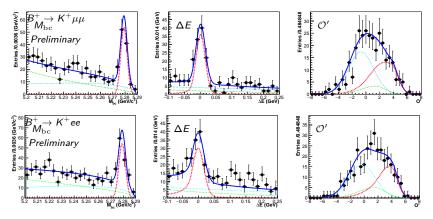
$$5.2 < M_{
m bc} < 5.29$$
 GeV/ c^2 and $-0.1 < \Delta E < 0.25$ GeV

イロト イヨト イヨト イヨト

Background suppression and NN translation

- The irreducible peaking background coming from $B \to KJ/\psi(\to \ell\ell)$ and $B \to K\psi(2S)(\to \ell\ell)$ are removed by q^2 veto.
- The peaking background are reduced by applying invariant mass veto.

Mode	Peaking source	Veto
$B^+ ightarrow K^+ \mu^+ \mu^-$	$B^+ ightarrow ar{D^0} (ightarrow K^+ \pi^-) \pi^+$	$M_{K^+\mu^-} \notin [1.8489 - 1.8810]$
$B^+ ightarrow K^+ \mu^+ \mu^-$	$B^+ ightarrow K^+ J/\psi (ightarrow \mu^+ \mu^-)$	$M_{K^+\mu^-} \notin [3.06 - 3.13]$

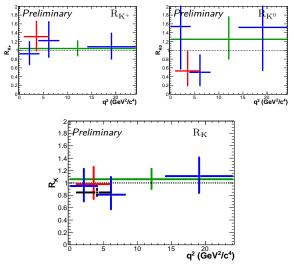

- B to charmless decays have negligible contribution in all modes.
- The *NN* is trained with some event shape, vertex quality and kinematic variables to suppress the background from continuum and generic *B* decays.
- The NN output (\mathcal{O}) is translated to \mathcal{O}' using the formula

$$\mathcal{O}' = \log rac{\mathcal{O} - \mathcal{O}_{\min}}{\mathcal{O}_{\max} - \mathcal{O}}$$

• $NN_{min} = -0.6$ reduces background ~ 75%, with signal efficiency loss of 4 - 5%.

Fit results for $B \to K\ell\ell$ [New]

- Extended maximum likelihood fit is performed in 3-dimensions *i.e.*, $M_{\rm bc}$, ΔE and \mathcal{O}' .
- $B \to KJ/\psi(\to \ell\ell)$ is used as a control sample to calibrate the signal PDF of $B \to K\ell\ell$.
- Example fit of $B^+ \rightarrow K^+ \mu \mu$ and $B^+ \rightarrow K^+ e^+ e^-$ for $q^2 > 0.1 \text{ GeV}^2/c^4$.

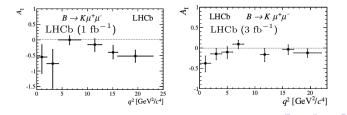


• 137 \pm 14, 138 \pm 15 events in $B^+ \to K^+ \mu^+ \mu^-$, $B^+ \to K^+ e^+ e^-$ modes.

• 27.3^{+6.6}_{-5.8} and 21.8^{+7.0}_{-6.1} events in $B^0 \to K^0_S \mu^+ \mu^-$ and $B^0 \to K^0_S e^+ e^-$ modes.

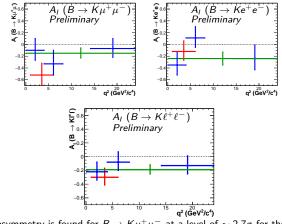
R_{K} , R_{K^+} and R_{K^0} results from Belle [New]

- R_{K^+} , R_{K^0} and R_K are measured for [0.1, 4.0], [4.0, 8.12], [1.0, 6.0], > 14.18 and > 0.1 q^2 bins.
- R_K is taken as weighted average of R_{K^+} and R_{K^0} .



• The measurements are found to be consistent with SM prediction as well as LHCb result.

Isospin Asymmetry (A_l) in $B \rightarrow K\ell\ell$ decays


$$\mathcal{A}_{I} = \frac{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(\mathrm{B}^{0} \to \mathrm{K}^{0}\ell\ell) - \mathcal{B}(\mathrm{B}^{+} \to \mathrm{K}^{+}\ell\ell)}{(\tau_{B^{+}}/\tau_{B^{0}}) \times \mathcal{B}(\mathrm{B}^{0} \to \mathrm{K}^{0}\ell\ell) + \mathcal{B}(\mathrm{B}^{+} \to \mathrm{K}^{+}\ell\ell)}$$

- BaBar [arXiv:0807.4119] has reported 3.2 σ in $B \to K\ell\ell$ for low q^2 bin using 384 million $B\bar{B}$ pairs.
- Belle [arXiv: 0904.0770] measurent with 657 million $B\bar{B}$ pairs, show no significant deviation from null value, $\sigma = 1.75$.
- LHCb [arXiv: 1205.3422] show deviation in $A_l(B \rightarrow K\mu\mu)$ measured for 1 fb^{-1} data sample, the deviation below $q^2 < 4.3 \text{ GeV}^2/c^4$ and above $q^2 > 16 \text{ GeV}^2/c^4$ bin more significant. The significance of the deviation from zero integrated across q^2 is 4.4 σ .
- LHCb [arXiv: 1403.8044] again show $A_l(B \to K\mu\mu)$ with 3 fb⁻¹ data sample and found negative asymmetry but the results are more consistent with SM expectation.

A₁ results from Belle [New]

- A_l is measured for $B \to K\mu^+\mu^-$, $B \to Ke^+e^-$ and $B \to K\ell^+\ell^-$ for [0.1, 4.0], [4.0, 8.12], [1.0, 6.0], > 14.18 and > 0.1 q^2 bins.
- $A_I(B \to K \ell^+ \ell^-)$ as weighted average of $A_I(B \to K \mu^+ \mu^-)$ and $A_I(B \to K e^+ e^-)$.

• The isospin asymmetry is found for $B \to K \mu^+ \mu^-$ at a level of $\sim 2.7\sigma$ for the bin of $1 < q^2 < 6 \text{ GeV}^2/c^4$ and this deviation is $\sim 2.5\sigma$ for $B \to K \ell^+ \ell^+$.

S. Choudhury (IIT Hyderabad, India)

Conclusion

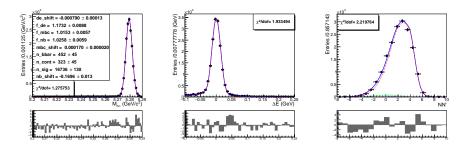
- The LFU ratio is measured for several q^2 bins, including the bin of $1 < q^2 < 6 \text{ GeV}^2/c^4$.
- The new results of R_K with Belle full data sample of 711 fb^{-1} are consistent with SM prediction as well as LHCb result.
- R_{K^*} measurement for different q^2 bins are compatible with SM prediction for Belle full data sample.

• A_l shows $\sim 2.7\sigma$ deviation for $B \to K\mu\mu$ mode of $1 < q^2 < 6 \text{ GeV}^2/c^4$ bin.

• More results to come from Belle and Belle II.

Thank you!

 R_K and A_I


Table: R_{K^+} , R_{K^0} and R_K for different q^2 bins.

Bin	R_{K^+}	R_{K^0}	R_K
$0.1 < q^2 < 4$	$0.92^{+0.27}_{-0.24}\pm 0.05$	$1.5^{+1.2}_{-1.0}\pm0.1$	$0.95^{+0.27}_{-0.24}\pm 0.06$
$4 < q^2 < 8.12$	$1.22^{+0.42}_{-0.37}\pm0.07$	$0.50^{+0.39}_{-0.30}\pm0.03$	$0.81^{+0.28}_{-0.23}\pm 0.05$
$1 < q^2 < 6$	$1.31^{+0.34}_{-0.31}\pm 0.07$	$0.53^{+0.44}_{-0.33}\pm0.03$	$0.98^{+0.27}_{-0.23}\pm0.06$
$q^2 > 14.18$	$1.08^{+0.30}_{-0.27}\pm0.06$	$1.52^{+1.23}_{-0.97}\pm0.10$	$1.11^{+0.29}_{-0.26}\pm 0.07$
whole q^2	$1.04^{+0.16}_{-0.15}\pm0.06$	$1.25^{+0.50}_{-0.44}\pm0.08$	$1.06^{+0.15}_{-0.14}\pm 0.07$

Table: $A_l(B \to K \mu \mu)$, $A_l(B \to K ee)$ and $A_l(B \to K \ell \ell)$ for different q^2 bins.

Bin	$A_l(B ightarrow K \mu \mu)$	$A_l(B ightarrow Kee)$	$A_l(B o K\ell\ell)$
$0.1 < q^2 < 4$	$-0.10^{+0.20}_{-0.17}\pm0.01$	$-0.35^{+0.21}_{-0.17}\pm0.01$	$-0.22^{+0.14}_{-0.12}\pm0.01$
$4 < q^2 < 8.12$	$-0.33^{+0.23}_{-0.19}\pm0.01$	$0.11^{+0.19}_{-0.16}\pm 0.01$	$-0.08^{+0.15}_{-0.12}\pm0.01$
$1 < q^2 < 6$	$-0.52^{+0.20}_{-0.17}\pm0.02$	$-0.12^{+0.18}_{-0.15}\pm0.01$	$-0.30^{+0.13}_{-0.11}\pm0.01$
$q^2 > 14.18$	$-0.07^{+0.17}_{-0.15}\pm0.01$	$-0.24^{+0.23}_{-0.19}\pm0.01$	$-0.13^{+0.14}_{-0.12}\pm0.01$
whole q^2	$-0.15^{+0.09}_{-0.08}\pm0.01$	$-0.24 \pm 0.11 \pm 0.01$	$-0.19^{+0.07}_{-0.06}\pm 0.01$

<ロ> (日) (日) (日) (日) (日)

Condition	R_K	
$R_{K}(B^{+} \rightarrow K^{+}J/\psi)$	0.992 ± 0.011	
$R_{K}(B^{0} \rightarrow K_{S}^{0}J/\psi)$	1.048 ± 0.020	

< 口 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >