First measurements of the ϕ_3 -sensitive decay $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm}$ with Belle

Resmi P K

(on behalf of Belle Collaboration)

Indian Institute of Technology Madras, Chennai, India

EPS-HEP 2019

July 11, 2019

- Introduction
- $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm} / \pi^{\pm}$ decays at Belle
- Determination of K_i and \bar{K}_i from D^* tagged D decays
- Measurement of ϕ_3 -sensitive parameters x_\pm and y_\pm
- Estimation of ϕ_3 , r_B , and δ_B
- Summary

(0, 0)

(1,0)

CKM angles - current status

Current best results for CKM angles $\ensuremath{^{[2]}}$

•
$$\phi_1^{ ext{measured}} = (22.2^{+0.7}_{-0.7})^\circ$$

•
$$\phi_3^{ ext{measured}} = (73.5^{+4.2}_{-5.1})^\circ$$

•
$$\phi_3^{\text{predicted}} = (65.8^{+1.0}_{-1.7})^{\circ} \ ^{[1]}$$

¹http://ckmfitter.in2p3.fr

 $^{2} http://www.slac.stanford.edu/xorg/hflav/triangle/moriond2018/index.shtml \\$

ϕ_3 measurements from $B^\pm o DK^\pm$ decays

• ϕ_3 from the interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D^0} K^-$, tree-level diagrams $\Rightarrow 10^{-7}$ theoretical uncertainty ^[3]

- Statistically limited due to small branching fractions of decays involved
- The statistical uncertainty on $\phi_3 \propto 1/r_B$
- $r_B^{DK} pprox 0.1$ and $r_B^{D\pi} pprox 0.005; B^\pm o D\pi^\pm$ decays are not very sensitive!
- But they serve as good calibration modes due to similar topology and sample $\left(\frac{\mathcal{B}(B^{\pm} \rightarrow D\pi^{\pm})}{\mathcal{B}(B^{\pm} \rightarrow DK^{\pm})} \approx 10\right)$
- ³J. Brod, J. Zupan, JHEP **01**, 051 (2014)

Model-independent determination

- Binned Dalitz plot analysis of multibody *D* final states like $K_{\rm S}^0 \pi^+ \pi^-$, $K_{\rm S}^0 K^+ K^-$, $\frac{K_{\rm S}^0 \pi^+ \pi^- \pi^{0[4]}}{\pi^0}$
- For the B^- decay, the signal yield in each bin is represented as

- $\mathbf{x}_{\pm} = r_B \cos(\delta_B \pm \phi_3); \ \mathbf{y}_{\pm} = r_B \sin(\delta_B \pm \phi_3).$
- c_i , s_i cosine and sine of the strong phase difference between D^0 and \overline{D}^0 averaged over the *i*th region of phase space (bin) \Rightarrow input from CLEO-c or BESIII

• K_i and $\bar{K_i}$ - fraction of flavour-tagged D events \Rightarrow from $D^{*\pm} \rightarrow D\pi^{\pm}$ decays.

⁴A. Giri, Yu. Grossman, A. Soffer and J. Zupan, PRD **68**, 054018 (2003)

$D \rightarrow K_{\rm S}^0 \pi^+ \pi^- \pi^0$ decays

- The dominant mode in ϕ_3 measurements using model-independent formalism is $K_S^0 \pi^+ \pi^-$ owing to high sensitivity from ADS and GLW like regions in the Dalitz.
- The decay $D \to K_{\rm S}^0 \pi^+ \pi^- \pi^0$ has a relatively large branching fraction of 5.2% ^[5] which is almost twice that of $D \to K_{\rm S}^0 \pi^+ \pi^-$. 750k events in Belle dataset^[6]
- Interesting resonance substructures.
 - $K_{\rm S}^0 \omega$ *CP* eigenstate GLW like.

• $K^{*-}\pi^{+}\pi^{0}$ - Cabibbo-favored state - ADS like.

DIII	Bill region	
1	$m(\pi^+\pi^-\pi^0) \approx m(\omega)$	
2	$m(K_{\rm S}^0\pi^-) \approx m(K^{*-}) \&$	
	$m(\pi^+\pi^0) \approx m(\rho^+)$	
3	$\mathrm{m}(K_{\mathrm{S}}^{0}\pi^{+})pprox\mathrm{m}(K^{*+})$ &	
	$m(\pi^-\pi^0) \approx m(\rho^-)$	
4	$m(K_S^0\pi^-) \approx m(K^{*-})$	
5	$m(K_{\rm S}^0\pi^+) \approx m(K^{*+})$	
6	$m(K^0_S\pi^0)pprox m(K^{*0})$	
7	$m(\pi^+\pi^0) \approx m(\rho^+)$	
8	$m(\pi^-\pi^0) \approx m(\rho^-)$	
9	Remainder	

⁵M. Tanabashi *et al.* (PDG), PRD. **98**, 030001 (2018).

⁶K. Prasanth et al. (Belle Collaboration), PRD. 95, 091101(R) (2017).

⁷P. K. Resmi, J. Libby, S. Malde, and G. Wilkinson, J. High Energ. Phys. 01, 82 (2018).

Resmi P K, IIT Madras ϕ_3 measurements

KEKB and Belle

• KEKB is an asymmetric e^+e^- collider with 8.0 GeV e^- and 3.5 GeV e^+ .

- Belle detector comprises of tracking systems, particle identification (PID) detectors and electromagnetic calorimeter (ECL).
- 772×10⁶ BB
 pairs produced from collisions at Υ(4S) resonance ⇒ 711 fb⁻¹ data during 1999–2010.

$B^{\pm} \rightarrow D(K^0_{\rm S} \pi^+ \pi^- \pi^0) K^{\pm} / \pi^{\pm}$ decays at Belle

- Events are selected with
 - track quality criteria
 - K/π separation using PID info
 - $|M_i M_{PDG}| < 3\sigma;$ $i = D, K_S^0, \pi^0$

$$M_{bc} = c^{-2} \sqrt{E_{beam}^{*2} - |\vec{p_B^*}|^2 c^2}$$
$$\Delta E = E_B^* - E_{beam}^*$$

•
$$M_{
m bc} > 5.27~{
m GeV}/c^2$$

•
$$-0.13 < \Delta E < 0.3 \text{ GeV}$$

FoM / Efficiency Vs E_{γ} threshold

- Misreconstructed π^0 causes more random combinations of final state particles.
- Optimised selection of E_{γ} done by looking at the position of γ in ECL and good π^0 candidates are chosen.

γ_1	γ_2	$E_{\gamma 1}$ (MeV)	$E_{\gamma 2}$ (MeV)
Barrel	Barrel	70	65
FWD ec	Barrel	220	65
Barrel	BWD ec	65	95
FWD ec	FWD ec	150	210

Background studies

 67% background reduction at the cost of 5% signal efficiency loss, with NB > -0.6 selection.

- Event shape variables and other discriminating variables including angular, vertex and flavour tag observables using a Neural Network (NN).
- Transformed NN output $NB' = \log\left(\frac{NB - (-0.6)}{0.9985 - NB}\right)$

Effect of optimized selection

• The effect of optimized selection to reduce the backgrounds is illustrated in $B^{\pm} \rightarrow DK^{\pm}$ MC sample.

Signal extraction

• Extended maximum likelihood fit to the variables ΔE and NB' simultaneously

- Signal, $q\bar{q}$ bkg, $B\bar{B}$ bkg and $K \pi$ cross-feed components are shown.
- Fitter shows no bias: verified with true yields in MC, more MC samples and pseudo experiments.
- Signal yields are shown in the table along with that of $D \to K_{\rm S}^0 \pi^+ \pi^- \text{ mode}^{[8]}$.

	$B^\pm o D\pi^\pm$	$B^{\pm} \rightarrow DK^{\pm}$
$D ightarrow K_{ m S}^0 \pi^+ \pi^- \pi^0$	9981 \pm 134	815 ± 51
$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	19106 ± 147	1176 ± 43

⁸PRD **85**, 112014 (2012)

Determination of K_i and \overline{K}_i

- $D^{*\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) \pi_{\rm slow}^{\pm}$ decays are used to extract the fraction of D^0 and $\overline{D^0}$ events in each bin, *i.e.* the K_i and \overline{K}_i values.
- D selection is the same as in $B^{\pm} \rightarrow DK^{\pm}/\pi^{\pm}$ sample.
- $\Delta M < 0.15 \text{ GeV}/c^2$; $\Delta M = M_{D^*} M_D$
- $1 < p_D < 4 \text{ GeV}/c$

• Extended maximum likelihood fit to the variables ΔM and M_D for signal extraction; signal yield in data is **614870** ± **2145**

Resmi P K, IIT Madras

Measurement of x_{\pm} and y_{\pm}

- x_{\pm} , y_{\pm} parameters are directly extracted from the simultaneous fit.
- There can be migration of events between the bins due to finite momentum resolution. This is corrected for in the fit via a 9×9 migration matrix.

_	iciciii	by concetion is applied to D	
		$B^\pm o D\pi^\pm$	$B^\pm o DK^\pm$
_	<i>x</i> +	$0.039 \pm 0.024 \stackrel{+0.018}{_{-0.013}} \stackrel{+0.014}{_{-0.012}}$	$-0.030 \pm 0.121 \stackrel{+0.017}{_{-0.018}} \stackrel{+0.019}{_{-0.018}}$
-	y_+	$-0.196 {}^{+0.080}_{-0.059} {}^{+0.038}_{-0.034} {}^{+0.032}_{-0.030}$	$0.220 {}^{+0.182}_{-0.541} \pm 0.032 {}^{+0.072}_{-0.071}$
ţ	x_	$-0.014\ \pm 0.021\ {}^{+0.018}_{-0.010}\ {}^{+0.019}_{-0.010}$	$0.095\pm0.121{}^{+0.017}_{-0.016}{}^{+0.023}_{-0.025}$
3	у_	$-0.033\pm0.059^{+0.018}_{-0.019}~^{+0.019}_{-0.010}$	$0.354 {}^{+0.144}_{-0.197} {}^{+0.015}_{-0.021} {}^{+0.032}_{-0.049}$

• Efficiency correction is applied to $D^{*\pm} \rightarrow D\pi^{\pm}$ and $B^{\pm} \rightarrow DK^{\pm}/\pi^{\pm}$ samples.

The uncertainties are statistical, systematic and due to c_i , s_i inputs, respectively.

Determination of ϕ_3 , r_B , and δ_B

• The physical parameters $\mu = (\phi_3, r_B, \delta_B)$ obtained from the measured

parameters $z = (x_+, y_+, x_-, y_-)$ using the frequentist treatment with the Feldman-Cousins ordering^[9].

Parameter	Results	2σ interval
<i>φ</i> ₃ (°)	$5.7 \ ^{+10.2}_{-8.8} \ \pm \ 3.5 \ \pm \ 5.7$	(-29.7 , 109.5)
δ_B (°)	83.4 $^{+18.3}_{-16.6}~\pm~3.1~\pm~4.0$	(35.7 , 175.0)
r _B	$0.323~\pm~0.147~\pm~0.023~\pm~0.051$	(0.031 , 0.616)

• The current world-average values are $\phi_3 = (71.1^{+4.6}_{-5.3})^\circ$, $\delta_B = (129.6^{+5.0}_{-6.0})^\circ$ and

Resmi P K, IIT Madras ϕ_3 measurements

Belle average

- The averages of the following ϕ_3 measurements performed at Belle
 - $B^{\pm} \rightarrow D(K^0_{
 m S}\pi^+\pi^-)K^{\pm}$ model-independent^[8]
 - $B^0
 ightarrow D(K^0_{
 m S}\pi^+\pi^-)K^{*0}$ model-dependent^[10]
 - $B^{\pm} \rightarrow D(K^0_{\rm S}\pi^+\pi^-\pi^0)K^{\pm}$ model-independent this result

- ϕ_3 without this measurement = $(78^{+14}_{-15})^{\circ}$
- ϕ_3 including this measurement = $(74^{+13}_{-14})^{\circ}$

⁸PRD **85**, 112014 (2012)

¹⁰PTEP **2016**, 043C01 (2016)

Summary

- Measuring the CKM angle ϕ_3 more precisely is important to further test the standard model description of *CP* violation.
- $D \rightarrow K_{\rm S}^0 \pi^+ \pi^- \pi^0$ is a promising candidate to measure ϕ_3 due to larger branching fraction and resonance substructures.
- For the first time, $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm}$ decays are analysed at Belle.
- The ϕ_3 sensitive parameters x_{\pm} and y_{\pm} are measured in $B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^- \pi^0) K^{\pm}$ data sample.
- The physical parameter ϕ_3 is determined via frequentist method.
- The paper will soon be submitted to the journal!
- Estimates of ϕ_3 sensitivity with $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm}$ give $\sigma_{\phi_3} = 4.4^{\circ}$ with 50 ab⁻¹ data from Belle II^[7].

⁷P. K. Resmi, J. Libby, S. Malde, and G. Wilkinson, J. High Energ. Phys. 01, 82 (2018).

Back-up slides

Source	$B^{\pm} ightarrow D\pi^{\pm}$					$B^{\pm} \rightarrow$	→ DK [±]	
	<i>x</i> +	<i>y</i> +	x_	У_	<i>x</i> +	<i>y</i> +	x_	У_
Efficiency	+0.013	+0.030	+0.012	+0.012	+0.012	+0.022	+0.012	+0.013
uncertainty	-0.009	-0.027	-0.008	-0.013	-0.013	-0.023	-0.012	-0.016
Migration matrix	+0.011	+0.021	+0.011	+0.013	+0.007	+0.015	+0.007	+0.006
uncertainty	-0.004	-0.019	-0.003	-0.014	-0.008	-0.016	-0.007	-0.012
$m_{\pi\pi\pi^0}$ resolution	0.003	0.001	0.004	0.001	0.001	0.001	0.001	0.003
$K_i, \overline{K_i}$	+0.004	+0.007	+0.004	+0.002	+0.001	+0.001	+0.002	+0.001
uncertainty	-0.001	-0.006	-0.001	-0.002	-0.002	-0.001	-0.002	-0.001
PDF shape	+0.004	+0.004	+0.004	+0.001	+0.009	+0.017	+0.009	+0.001
	-0.008	-0.003	-0.004	-0.001	-0.008	-0.016	-0.007	-0.005
Fit bias	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.003
PID	0.001	0.001	0.001	0.000	0.002	0.001	0.002	0.001
Total systematic	+0.018	+0.038	+0.018	+0.018	+0.017	+0.032	+0.017	+0.015
uncertainty	-0.013	-0.034	-0.010	-0.019	-0.018	-0.032	-0.016	-0.021
	+0.014	+0.032	+0.010	+0.019	+0.019	+0.072	+0.023	+0.032
uncertainty	-0.012	-0.030	-0.006	-0.010	-0.018	-0.071	-0.025	-0.049
Total statistical	+0.024	+0.080	+0.021	+0.059	+0.121	+0.182	+0.121	+0.144
uncertainty	-0.024	-0.059	-0.021	-0.059	-0.121	-0.541	-0.121	-0.197

Measured and expected bin yields

M_{pred}(best fit x, y)

7 8 9 Bin number

M_{pred}(best fit x, y

- M_{meas}

(b)

7 8 9

Bin number

6

- M_{meas}

56

5

(b)

Bin no.	1	2	3	4	5	6	7	8	9
1	0.93	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01
2	0.01	0.96	0.02	0.00	0.00	0.00	0.00	0.00	0.00
3	0.01	0.02	0.95	0.00	0.00	0.00	0.00	0.00	0.00
4	0.04	0.03	0.02	0.90	0.00	0.00	0.00	0.00	0.01
5	0.04	0.01	0.03	0.01	0.91	0.01	0.00	0.00	0.01
6	0.02	0.02	0.01	0.01	0.01	0.92	0.01	0.00	0.00
7	0.01	0.03	0.02	0.00	0.01	0.02	0.91	0.00	0.01
8	0.01	0.02	0.02	0.01	0.00	0.01	0.01	0.88	0.02
9	0.06	0.02	0.02	0.01	0.01	0.01	0.01	0.00	0.86

 Table : Migration matrix for $B^+ \rightarrow DK^+$ decays estimated from signal MC sample. The rows correspond to the true bins and columns show the reconstructed bins.

Bin no.	1	2	3	4	5	6	7	8	9
1	0.93	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01
2	0.01	0.96	0.01	0.00	0.00	0.00	0.00	0.00	0.00
3	0.01	0.02	0.95	0.01	0.00	0.01	0.00	0.00	0.00
4	0.03	0.02	0.02	0.92	0.00	0.01	0.00	0.00	0.00
5	0.03	0.02	0.02	0.01	0.91	0.01	0.00	0.00	0.01
6	0.03	0.02	0.01	0.01	0.00	0.93	0.00	0.01	0.00
7	0.01	0.03	0.01	0.00	0.00	0.01	0.92	0.00	0.01
8	0.00	0.01	0.03	0.00	0.01	0.01	0.01	0.92	0.01
9	0.05	0.01	0.01	0.01	0.00	0.02	0.01	0.01	0.88