CMS Experiment at LHC, CERN Data recorded: Tue Sep 27 10:30:59 2016 EDT Run / Event / LS: 281707 / 1308250303 / 826

CMS

UNIVERSITY OF WISCONSIN - MADISON, USA ON BEHALF OF THE CMS COLLABORATION

Dark Sector Searches

at CMS

EPS-HEP 2019 Conference Ghent, Belgium July 10-17, 2019

2

COMPACT MUON SOLENOID (CMS)

SM interactions are understood pretty well

New physics signature

- Astrophysical observations indicate the existence of dark matter
- No observation in laboratory
- Several models with various type of interactions
- Dark sector interactions can give non-prompt signatures we should be looking for
- Challenging!
 - Analyses often require complex trigger strategies
 - Final states may require dedicated reconstruction techniques
 - Unconventional ways

Search for a scalar boson produced in association with a Z boson and decaying to $\sqrt{}$

 Dark photon couples to the Higgs boson through a charged dark sector

an invisible particle together with an

isolated photon

Dark Photons in ZH decays

Variable	Selection Reject				
Leptons	2 leptons, $p_{\rm T} > 25/20 {\rm GeV}$	WZ, ZZ, VVV			
Photons	≥ 1 photon, $E_{\rm T}^{\gamma} > 25$ GeV	All but $Z\gamma$		All but $Z\gamma$	
$m_{\ell\ell} - m_Z$	< 15 GeV	WW, top-quark			
Anti b tagging	Applied medium working point	Top-quark, VVV			
et counting	≤ 2	Top-quark, VVV			
$\Delta \phi_{ec{\ell}\ell,ec{p}_{\mathrm{T}}^{\mathrm{miss}}+ec{E}_{\mathrm{T}}^{\gamma}}$	>2.5 radians	$Z\gamma$			
$p_{\mathrm{T}}^{ec{p}_{\mathrm{T}}^{\mathrm{miss}}+ec{E}_{\mathrm{T}}^{\gamma}}-p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell} $	< 0.4	$Z\gamma$			
$\Delta \phi_{ m jet, p_T^{ m miss}}$	> 0.5	Zγ	5		
$p_{\rm T}^{\ell\ell}$	> 60 GeV	Zγ	F		
$n_{\ell\ell\gamma}$	> 100 GeV	$Z\gamma$			
o ^{miśs} T	> 110 GeV	$Z\gamma$			
n _T	< 350 GeV	WW, top-quark			

CMS PAS EXO-19-007

Also look at: Higgs boson rare and exotic decays at CMS by Fengwangdong Zhang

Selections and major background processes rejected by different variables used

Variable of interest: m_T (MET, photon): $m_T \equiv \sqrt{2p_T^{\text{miss}}E_T^{\gamma}[1-\cos(\Delta\phi_{\vec{p}_T^{\text{miss}},\vec{E}_T^{\gamma}})]}$

Jacobian peak structure with end-point at $m_T \sim m_H$, flat or lower values for background

Dark Photons in ZH decays

Yields

1 /

Data	14
Nonresonant bkg.	2.4 ± 1.1
WZ	8.1 ± 2.0
ZZ	1.5 ± 0.3
$Z\gamma$	0.7 ± 0.7
Other bkg.	0.6 ± 0.3
Total bkg.	13.3 ± 3.8
ZH ₁₂₅ (BR=10%)	$17.9 \pm 1.2 \ (1.42 \pm 0.09 \ \%)$
ZH ₂₀₀ (BR=10%)	$12.3 \pm 0.8 \ (4.32 \pm 0.28 \ \%)$
ZH ₃₀₀ (BR=10%)	$3.9 \pm 0.2~(6.80 \pm 0.34~\%)$

Process

Observed yields, bkg estimates and signal predictions in the signal region

Signal predictions for BR(H \rightarrow invisible+ γ) = 10% assuming SM ZH cross section for given H mass

The observed and expected 95% CL upper limits at $m_H = 125$ GeV assuming SM production rate on BR(H \rightarrow invisible+ γ) are **4.6% and 3.6%**, respectively

July 12, 2019

CMS PAS EXO-19-007

Emerging Jets

- Class of models includes new, electrically-neutral fermions called "dark quarks"
- Not charged under the forces of the SM but are charged under a new force in the dark sector ("dark QCD") that has confining properties similar to SM QCD
- Such models naturally explain the observed mass densities of baryonic matter and dark matter
- This search consider particularly, the dark QCD model of <u>Bai, Schwaller</u>, <u>Stolarski, and Weiler</u> (BSSW) that predicts <u>"emerging jets"</u>

Emerging Jets (EJs): Long-lived dark hadrons giving rise to displaced vertices when decaying to SM hadrons

Emerging Jets

- Use of displacement and associated tracks and vertices to tag EJs
- 4 Jets: either 2-EJs or 1-EJ and large MET
- Multijets with b-jets main background: use data-driven estimates, studied as a function of track multiplicity

16.1 fb⁻¹ (13 TeV) 16.1 fb⁻¹ (13 TeV) Jets 10 Events 50 CMS CMS Data Data Predicted Predicted 80 40 Predicted unc. Predicted unc. 60 30 40 20 20 10 0 (Data - Pred.) (Data - Pred.) .2 0 _2 _2 0 Unc. 1200 1400 1600 1800 2000 2200 2400 1000 35 5 10 15 20 25 30 40 H_T [GeV] Track multiplicity

The H_T and number of associated tracks of the observed data events and expected background in one of the CRs

Emerging Jets

	Criteria group	$PU_{\rm dz}$ (<) [cm]	$D_{\rm N}~(<)$	$\langle IP_{2D} \rangle$ (>) [cm]	$\alpha_{\rm 3D}~(<)$
(EMJ-1	2.5	4	0.05	0.25
	EMJ-2	4.0	4	0.10	0.25
SR J	EMJ-3	4.0	20	0.25	0.25
	EMJ-4	2.5	4	0.10	0.25
	EMJ-5	2.5	20	0.05	0.25
C	EMJ-6	2.5	10	0.05	0.25
SM ∫	EMJ-7	2.5	4	0.05	0.40
QCD l	EMJ-8	4.0	20	0.10	0.50

Set number	Fypotod	Observed	Signal	Model parameters		
Set number	Expected	Observed	Signai	$m_{\rm X_{DK}}$ [GeV]	$m_{\pi_{\rm DK}}$ [GeV]	$c\tau_{\pi_{\mathrm{DK}}}$ [mm]
1	$168 \pm 15 \pm 5$	131	36.7 ± 4.0	600	5	1
2	$31.8 \pm 5.0 \pm 1.4$	47	$(14.6 \pm 2.6) \times 10^2$	400	1	60
3	$19.4 \pm 7.0 \pm 5.5$	20	15.6 ± 1.6	1250	1	150
4	$22.5 \pm 2.5 \pm 1.5$	16	15.1 ± 2.0	1000	1	2
5	$13.9 \pm 1.9 \pm 0.6$	14	35.3 ± 4.0	1000	2	150
6	$9.4 \pm 2.0 \pm 0.3$	11	20.7 ± 2.5	1000	10	300
7	$4.40 \pm 0.84 \pm 0.28$	2	5.61 ± 0.64	1250	5	225

Requirements on the variables used in identifying emerging jets

Expected and observed event yields for each selection set

- Dark pion decay lengths between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV are excluded
- First dedicated search for the pair production of a new particle that decays to a jet and an emerging jet

Dark Photons to 4 Muons

arXiv:1812.00380 CMS HIG-18-003

- Search for the pair production of a light boson that decays into a pair of muons
- Interpretations: Supersymmetry (SUSY) models with hidden sectors (dark SUSY)
 - Breaking of a new $U(1)_{\rm D}$ symmetry gives rise to a massive dark photon $\gamma_{\rm D}$

• The lifetime, and thus the displacement, of the dark photon is dependent upon kinematic mixing parameter ε and the mass of the dark photon

Dark Photons to 4 Muons

- Similar invariant mass for muon pairs
- Negligible backgrounds: bb, J/ ψ pair production, Z+ J/ ψ , electroweak 4 μ via off-shell Zs

Higgs invisible

- Search for invisible decays of a Higgs boson in association with jets
- Search exploits large m_{jj} and $|\Delta \eta_{jj}|$ that characterize VBF higgs production
- Major background (95%): $Z(\nu\nu)$ +jets and $W(\ell\nu)$ +jets

Upper limit on $B(H \rightarrow inv)$ of 0.19 (0.15) at 95% CL, assuming SM production rates for the Higgs boson and a Higgs boson mass of 125.09 GeV

EPS-HEP2019: VARUN SHARMA

Dark

matter

candidates

13

Higgs invisible

Interpretations: Higgs portal models of Dark Model interactions

The observed 90% CL upper limit of $B(H \rightarrow inv) < 0.16$ is interpreted in terms of Higgs-portal models of dark matter (DM) interactions Limits provides the strongest constraints on fermion (scalar) DM particles with masses smaller than about 18 (7) GeV

EPS-HEP2019: VARUN SHARMA

function of coupling multipiers

Summary

- No excess yet
 - New ideas, brain-storming to continue
- Lots of exciting searches from CMS on-going
- Highlighted several recent results on Dark sector searches today
- Displaced vertices searches continue to attract new efforts and ideas
- A lot of room for new searches in this comparatively unexplored frontier

Stay tuned for more results!

EXTRA MATERIAL

18

Phys. Lett. B 793 (2019) 520

Higgs invisible