Searches for new phenomena in final states involving leptons and jets using the ATLAS detector

Adriana Milic

July 10-17, 2019 EPS - Ghent, Belgium On behalf of the ATLAS collaboration

Introduction

- Final states including jets and leptons are used to investigate a wide range of phenomena.
- Selection of newest results from ATLAS is presented.
- Data from LHC Run 2 at 13 TeV proton-proton collisions used. Selected analyses include data from 2015, 2016, and 2017 (36 80 fb⁻¹).
- Presented today
 - Search for excited electrons
 - Searches for third-generation scalar leptoquarks
 - Search for a right-handed gauge boson decaying to a right-handed heavy neutrino

- Excited *electrons* appear in various **composite models.**
- Composite models introduce particles called *preons* that bind at a *high scale* A to form SM fermions and their excited states
- Excited fermions form vector-like states (SU(2) doublets and singlets) that acquire masses on the order of Λ .

Theory

Search is divided into two channels:

$$pp \rightarrow ee^* \rightarrow eeqq = eejj \text{ channel}$$
 $pp \rightarrow ee^* \rightarrow evW = evJ \text{ channel}$

$$pp \rightarrow ee^* \rightarrow evW = evJ$$
 channel

Main backgrounds:

- Z/γ^* (eejj channel)
- W+jets (evJ channel)
- ttbar, single top, diboson (both channels)

- Signal region *eejj* constrained with three kinematic variables:
 - Invariant mass m_{ij} of electron pair
 - Scalar sum S_T of transverse momenta of two electrons and two jets with highest p_T .
 - Invariant mass m_{llii} of two electrons and two jets.

Normalization for Z+jets, ttbar, and W+jets extracted from control regions.

- In signal region *evJ* significance optimized for each *e** using
 - Transverse mass m_T^{vW}
 - $|\Delta \varphi(e, E_T^{miss})|$

July 11, 2019

Adriana Milic

- Binned likelihood fit performed on yields in two control regions and the signal regions.
- Limits set on $\sigma \times B$ as function of m_e^* .

- Unified likelihood function for both channels constructed in order to set combined limit on compositeness scale Λ.
- A excluded up to 13 TeV in the low mass region.
- The limits for $m_e^* > 4$ TeV are the result of extrapolation.

Search for third gen. scalar leptoquarks

- Search for **pair production of scalar leptoquarks** (LQs) decaying into third generation quarks (t,b) and a lepton (τ , ν).
- *LQ*s couple to lepton-quark pair via Yukawa interaction. Coupling determined by
 - \circ **Model parameter** β
 - Coupling parameter λ
- Search carried out for an **up-type** $(LQ^u_{\ 3} \to \tau v/b\tau)$ and a **down-type** $(LQ^d_{\ 3} \to bv/t\tau) LQ$.

 β is not equal to the branching ratio for third-generation LQs due to the relatively large *top-quark mass*.

 \rightarrow Results presented as a function of the *LQ mass* and *B* into *charged leptons*.

July 11, 2019 Adriana Milic <u>EXOT-2017-30</u>

Search for third gen. scalar leptoquarks

bτ**b**τ **channel** split in

- $\tau_{lep} \tau_{had}$
- \bullet $\tau_{had} \tau_{had}$
- Events with one or two *b-jets*.

 $tt + E_T^{miss}$ with one lepton channel where

- $t_{lep} t_{had}$
- = 1 isolated electron/muon
- \geq 4 *jets*, \geq 1 b-*jet*
- \bullet E_T^{miss}

 $tt + E_T^{miss}$ with no lepton channel

- \bullet $t_{had} t_{had}$
- 0 leptons
- ≥ 4 jets, ≥ 1 b-jet
- \bullet E_T^{miss}

 $\tau \tau b + E_T^{miss}$ **channel** split in

- $\tau_{lep} \tau_{had}$
- \bullet τ_{had} τ_{had}
- \bullet E_T^{miss}

 $bb + E_T^{miss}$ channel split in

- Zero or one *lepton*
- = 2 b-jets
- \bullet E_T^{miss}

- Each analysis set **upper limits on cross-section** for a **fixed value of B** that is expected to have the highest sensitivity for the respective analysis.
- Strongest limits for B = 1 ($b\tau b\tau$) and B = 0 ($tt + E_T^{miss}$) channels.

Search for third gen. scalar leptoquarks

- Based on **theoretical prediction for the LQ pair production cross-section**, these cross-section limits can be converted to **lower limits on the** *LQ mass*.
- Excluding LQ masses < 800 GeV (independently of B), and < 1000 GeV for B = 1 or B = 0.

Search for a right-handed gauge boson

- Search for a right-handed gauge boson W_R , decaying into a *boosted right-handed heavy neutrino* N_R .
- Small neutrino masses explained through Seesaw mechanism. In this analysis Left-Right Symmetric Model (LRSM) considered that postulates SM-singlet heavy neutrino N_R .

Signature

- *Lepton* and *large R-jet* back to back.
- N_R boosted \rightarrow Subleading lepton should be inside jet and isolated.
- Same flavor leptons required.
- Analysis split into *electron* and *muon* channel.

Search for a right handed gauge boson

- Dominating backgrounds
 - o ttbar
 - \circ Z+jets
- Z+jets fitted in MC in full range.
- *ttbar* fit in CR in data with Z+jets fixed to value obtained from MC.
- VR used to asses electron identification performance inside jet
 → add 30% uncertainty to cover for mismodeling.

Region	Range of $m_{W_{\rm R}}^{\rm reco}$	Lepton flavour
Signal region (SR) Control region (CR) Validation region (VR)	> 2 TeV < 2 TeV All	Same flavour Same flavour Mixed flavour (leading: muon; subleading: electron)

Search for a right handed gauge boson

One-binned likelihood fit performed to obtain limits on the mass of N_p and W_p .

Electron Muon $2.8^{+0.5}_{-0.7}$ $1.9^{+0.5}_{-0.7}$ 1.2σ

 2.4σ

Summary

• Excited electrons

- \circ Λ excluded up to 13 TeV for $m_e^* < 2$ TeV.
- Third generation scalar LQ
 - Excluding LQ masses < 800 GeV (independently of B), and < 1000 GeV for B = 1 or B = 0.
- Right-handed gauge boson
 - W_R excluded for $m_{WR} < 5$ TeV

Backup

July 11, 2019 Adriana Milic