EPS-HEP2019

Contribution ID: 798

Type: Parallel talk

Fat Jet Signature of a Heavy Neutrino at Lepton Collider

Friday 12 July 2019 10:30 (15 minutes)

In this work, we study the discovery prospect of a heavy neutrino in the intermediate to very high mass range at e⁺e⁻ collider. We consider two different c.m.energies $\sqrt{s} = 1.4$ TeV and 3 TeV, respectively, that are relevant for CLIC. Contrary to the LHC, the production cross-section of a heavy neutrino at e⁺e⁻ collider is fairly large. We consider two different mass ranges $M_N = 600 - 1200$ GeV, that can be probed at 1.4 TeV run of CLIC, and $M_N = 1300 - 2700$ GeV, that can be discovered with 3 TeV c.m.energy. We consider the production mode e⁺e⁻ $\rightarrow \nu_e N$, and the subsequent decays of N into an electron e[±] and W[∓] gauge boson. We further consider the hadronic decay modes of W[±]. For such a heavy N, the W[±]'s are highly boosted. Hence, the quarks from W[±] are collimated, leading to a single fat-jet. Therefore, the final state is e[±] + j_{fat} + Missing momentum. We pursue an in-depth study for this final state, with both cut-based and multivariate analysis(MVA). We show that a heavy neutrino with mass 600 - 2700 GeV and mixing $|V_{eN}|^2 \sim 10^{-5} - 10^{-6}$ can be discovered with 5σ significance at e⁺e⁻ collider with $\mathcal{L} \sim 500$ fb⁻¹ luminosity, which is an order of magnitude betterment as opposed to the LHC limit.

Primary author:SHIL, SUJAY (INSTITUTE OF PHYSICS, BHUBANESWAR, INDIA)Presenter:SHIL, SUJAY (INSTITUTE OF PHYSICS, BHUBANESWAR, INDIA)Session Classification:Searches for New Physics

Track Classification: Searches for New Physics