Searches for right-handed neutrinos at accelerators

Jan Hajer

Centre for Cosmology, Particle Physics and Phenomenology — Université catholique de Louvain

EPS-HEP Conference 2019
Low scale seesaw (type I)

Three right handed neutrinos

\[
\mathcal{L}_{\nu_R} = -y_{ai} \bar{\nu}_a \epsilon \phi \nu_{Ri} - \frac{1}{2} \nu^c_{Ri} M_{ij} \nu_{Rj} + \text{h.c.}
\]

- \(y_{ai}\): Yukawa coupling
- \(M_{ij}\): Majorana mass

EWSB

SM is \(B - L\) symmetric

- Dirac mass \(m_{ai} = v y_{ai}\)
- Small \(M_{ij}\) minimizes breaking

Seesaw mechanism

\[
m_\nu = -m_{ai} M_{ij}^{-1} m_{bj} = -\theta_{ai} M_{ij} \theta_{bj}^T, \quad \theta_{ai} = m_{aj} M_{ij}^{-1}
\]

produces tiny masses for the left handed neutrinos

Small mixing into mass eigenstates

\[
\nu \simeq U_\nu^\dagger (\nu_L - \theta \nu_R^c), \quad N \simeq \nu_R + \theta^T \nu_L^c
\]

Coupling of \(N_i\) to the SM

\[
\mathcal{L} \supset -\frac{m_W}{\sqrt{2}} \bar{N} \theta^* \gamma^\mu e_L W_{\mu}^+ - \frac{M Z}{\sqrt{2} v} \bar{N} \theta^* \gamma^\mu \nu_L Z_{\mu} - \frac{M}{v} \theta a h \bar{\nu}_L \alpha \gamma^0 N + \text{h.c.}
\]

Abbreviation

\[
U^2_{ai} = \sum_i U^2_{ai}, \quad U^2_{ai} = |\theta_{ai}|^2
\]
Properties

Lifetime

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fs</td>
<td></td>
</tr>
<tr>
<td>1 ps</td>
<td></td>
</tr>
<tr>
<td>1 ns</td>
<td></td>
</tr>
<tr>
<td>1 μs</td>
<td></td>
</tr>
<tr>
<td>10 ps</td>
<td></td>
</tr>
<tr>
<td>100 ps</td>
<td></td>
</tr>
<tr>
<td>10 ns</td>
<td></td>
</tr>
<tr>
<td>100 ns</td>
<td></td>
</tr>
</tbody>
</table>

SM particles vs. coupling strength U^2

<table>
<thead>
<tr>
<th>SM Particle</th>
<th>τ [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^\pm</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>K_L</td>
<td>10^{-8}</td>
</tr>
<tr>
<td>K_S</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>K^0</td>
<td>10^{-10}</td>
</tr>
<tr>
<td>K_L^0</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>K_S^0</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>Σ^+</td>
<td>10^{-13}</td>
</tr>
<tr>
<td>Ξ^+</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>Ω</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>τ^+</td>
<td>10^{-16}</td>
</tr>
</tbody>
</table>

Decay width for $M \gg 5$ GeV

$$\Gamma_N \simeq 11.9 \times \frac{G_F^2}{96\pi^3} U_a^2 M^5,$$
Probability contours for U_{ai}^2 (2 active flavours)

The ratio U_a^2/U_2 is independent of other heavy neutrino parameter

Normal Ordering

Inverted Ordering

Coloured areas consistent with neutrino oscillation data at 1σ, 2σ, 3σ

Unknown Majorana phase correspond to the circular structure
NA62
Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \rightarrow \pi^+\nu\bar{\nu}$
- 10% measurement of the CKM parameter $|V_{td}|$
NA62

Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- 10% measurement of the CKM parameter $|V_{td}|$

Hidden sectors at NA62

- it can also be used to search for hidden new physics χ such as a heavy neutrino
- Target mode
- only K^+ induced processes
Fixed target experiment in the North Area using the CERN SPS with the goal to

- measure the very rare kaon decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- 10% measurement of the CKM parameter $|V_{td}|$

Hidden sectors at NA62

- it can also be used to search for hidden new physics χ such as a heavy neutrino
- Target mode
- only K^+ induced processes
- Dump mode
- D- and B-meson induced processes dominate
Heavy Neutrinos in the Dump mode

Simulation
- Toy Monte Carlo of the dump mode
- Zero background assumption

Run 3 (2021–2023)
- 10^{18} proton on target (POT)
- About 80 days of data taking

Production of heavy neutrinos via 2×10^{15} D- and 10^{11} B-mesons

$n_N \simeq 2N_{\text{POT}} \left(\chi_c f_D \text{BR} (D \to XN) + \chi_b f_B \text{BR} (B \to XN) \right)$,

- χ production cross section
- f production fractions of mesons

Number of reconstructed events

$N_{\text{obs}} = n_N \sum_{f, f'=e, \mu, \tau, \pi, K} \text{BR} (N_i \to f^+ f'^- X) A_i \left(f^+ f'^- X, M_i, U^2_{e, \mu, \tau} \right) \epsilon \left(f^+ f'^- X, M_i \right)$,

- A_i geometrical acceptance
- ϵ efficiency assumed to be 100%!
 (trigger, reconstruction, selection)
Branching Fractions

For $U_{ie}^2 : U_{i\mu}^2 : U_{i\tau}^2 = 1 : 160 : 27.8$

The dominant modes are

$$N_i \rightarrow 3\nu, \pi^0 \nu, \pi^\pm \ell^\mp, \rho^0 \nu, \rho^\pm \ell, \ell^+ \ell^- \nu$$

The detector is able to reconstruct all final states having two charged tracks.
10

pure U^2_{μ}

$U^2_{e} : U^2_{\mu} : U^2_{\tau}$

$0 : 1 : 0$

M_i [GeV]
pure U_T^2

<table>
<thead>
<tr>
<th>U_2</th>
<th>τ</th>
<th>U_2</th>
<th>e</th>
<th>U_2</th>
<th>μ</th>
<th>U_2</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

U_T^2 vs M_i [GeV]
LHC
Signature

Z-decay

\[p \rightarrow W^+ N Z^* \]

\[W^+ \rightarrow \nu_l \bar{f} \]

W-decay

\[p \rightarrow W^+ N W^{**} \]

\[W^+ \rightarrow l^- \bar{f} \]

Search strategy

- Trigger on first lepton
- Search for secondary vertex

Displaced vertex reconstruction

- At least 2 tracks
- Invariant mass of 5 GeV (in order to suppress nuclear interactions backgrounds)
- Particles must transverse at least half of the tracker
- Or the complete muon chamber

Muon chamber

- Muon chamber reaches farther than tracker
- Long lived particles can be search for using only muon chambers

[Bobrovskyi et al. 2011; CMS 2015]
Expectations

Simplified model

\[N_d \sim L_{int} \sigma_\nu U^2 \left(e^{-\frac{l_0}{\lambda_N}} - e^{-\frac{l_1}{\lambda_N}} \right) f_{cut}, \]

- \(l_0 \): minimal displacement
- \(l_1 \): detector length
- \(\lambda_N = \frac{\beta \gamma}{\Gamma_N} \): decay length

Significances and major obstacles

Deviation of simplified model from full simulation

\[U^2_{\text{a}} \]

\[U^2_{\mu} \]

\[M_i \text{ [GeV]} \]

\[M_i \text{ [GeV]} \]

\[U^2_{\text{a}} \text{ [10^{-8}]} \]

\[U^2_{\mu} \text{ [10^{-8}]} \]

\[1, 2, 3, 5, 10 \]

\[10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2} \]

\[10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}, 10^{-8} \]

\[0.1, 0.2, 1, 2, 5, 10 \]

\[0.1, 0.2, 1, 2, 5, 10 \]

\[1, 2, 3, 5, 10 \]

\[10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}, 10^{-8} \]

\[10^{-8}, 10^{-7}, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2} \]

\[10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}, 10^{-8} \]

\[0.1, 0.2, 1, 2, 5, 10 \]
Maximal exclusion reach

pure U^2_e

pure U^2_{μ}

pure U^2_{τ}
Heavy Ion Collisions
Properties of the heavy ions runs

Advantage

- No pile-up; single primary vertex
- Large nucleon multiplicity
 - e.g. $A(Pb) = 208$, $Z(Pb) = 82$
- Number of parton level interactions per collision scales with A
 - e.g. $\frac{\sigma_{PbPb}}{\sigma_{pp}} \propto A^2 = 43 \times 10^3$

Drawbacks

- There are a huge number of tracks near the interaction point which makes the search for prompt new physics extremely challenging
- The collision energy per nucleon is smaller. e.g. $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ for Pb which is problematic for heavy new physics
- The instantaneous luminosity is lower for heavier ions
- The LHC has allocated much less time to heavy ions runs than to protons runs

Possible ways out

- Low luminosity allows for lower triggers
- Lighter ions allow for higher luminosity

Diagram:

- Single primary vertex
 - invisible particle
 - incorrectly identified primary vertex
 - neutral LLP
 - charged particles

Text: Better event reconstruction possible.
The reason for the low luminosities are secondary beams [Jowett 2018]

For heavy ions there are additional contributions to the crosssection

Bound-Free Pair Production (BFPP):

\[^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \rightarrow ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + e^+ \]

[Meier et al. 2001]

Electromagnetic Dissociation (EMD):

\[^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \rightarrow ^{208}\text{Pb}^{82+} + ^{207}\text{Pb}^{82+} + n \]

[Pshenichnov et al. 2001]

Leads to

- Larger cross section results in faster beam decay
- Secondary beams consisting of ions with different charge/mass ratio

Can accidentally quench the magnets [Bruce et al. 2018]
The luminosity at one interaction point (IP) is

\[L \propto N_b^2 \] where \(N_b \) are number of ions per bunch

The initial bunch intensity

[Jowett 2018]

for arbitrary ions is fitted to the information of the lead run

\[N_b \left(\frac{A}{Z} N \right) = N_b \left(^{208}_{82} \text{Pb} \right) \left(\frac{Z}{82} \right)^{-p} \]

where \(p = 1 \) is a conservative assumption while \(p = 1.9 \) is an optimistic assumption.

The loss of number of ions per bunch \(N_b \) over time is given by

\[\frac{dN_b}{dt} = - \frac{N_b^2}{N_0 \tau_b} , \]

\[\tau_b = \frac{n_b N_0}{\sigma_{\text{tot}} n_{\text{IP}} L_0} , \]

where \(n_{\text{IP}} \) is the number of interaction points.

For a given turnaround time \(t_{\text{ta}} \) between the physics runs

the integrated luminosity is maximised by

\[t_{\text{opt}} = \tau_b \sqrt{\theta_{\text{ta}}} , \]

with

\[\theta_{\text{ta}} = \frac{t_{\text{ta}}}{\tau_b} . \]

The average luminosity using the optimal run time is

\[L_{\text{ave}}(t_{\text{opt}}) = \frac{L_0}{(1 + \sqrt{\theta_{\text{ta}}})^2} . \]
Heavy ion collisions

Full simulation of W production

Simplified simulation of B production

Considerable lower trigger of $p_T > 3$ GeV for heavy ion collisions
Conclusion

- Heavy neutrinos constitute a minimal extension to the SM featuring long lived particles.
- At the moment NA62 is the leading experiment able to search for right-handed neutrinos with masses between the K- and D-meson mass.
- Displaced vertices are a promising signature to detect right-handed neutrinos at the LHC.
- Heavy ion collisions provide a new environment to search for right-handed neutrinos.

CMS. “Search for long-lived particles that decay into final states containing two muons, reconstructed using only the CMS muon chambers”. №: CMS-PAS-EXO-14-012.

