BSM physics at the LHeC and the FCC-eh

Christian Schwanenberger

on behalf of the BSM@ep group Convenors: G. Azuelos, O. Fischer, M. D'Onofrio

> EPS conference Ghent, 12.07.19

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Possible Layouts for the LHeC and FCC-he

- ► Energy Recovering Linac (e beam: 60 GeV).
- Operation of LHeC (FCC-he) concurrent with LHC (FCChh).
- ERL can be compatible with FCC ring design.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロト < 同ト < 三ト < 三ト 三 三

Motivation for Beyond the Standard Model studies

	Collider	Type	\sqrt{s}	Р[%]	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time	Refs.	Abbreviation
				$[e^{-}/e^{+}]$		$[10^{34}] \mathrm{cm}^{-2} \mathrm{s}^{-1}$	[ab ⁻¹]	[years]		
_	HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	HL-LHC
_	HE-LHC	pp	27 TeV	-	2	16	15.0	20	[10]	HE-LHC
_	FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
_	FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	
			$2M_W$	0/0	2	25	10	1-2		
			240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀
			$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
			-					(+1)	(1y SD before 2mtop run)	
_	ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC250
			350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350
			500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC500
								(+1)	(1y SD after 250 GeV run)	
_	CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC
			$2M_W$	0/0	2	10	2.6	1		
			240 GeV	0/0	2	3	5.6	7		
_	CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀
			1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀
			3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC3000
_								(+4)	(2y SDs between energy stages)	
	LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[9]	LHeC
	HE-LHeC	ep	2.6 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC
_	FCC-eh	еp	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

Electron-proton collider: ideal laboratory to study common features of electrons and quarks with EW / VBF production, LQ,multi-jet final states, forward objects

Promising aspects:

- Small background (no QCD interaction between e and p)
- Very low pileup
- Here I give a short overview over a few selected topics.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

2 / 12

< ∃ →

3

SQ (~

Leptoquark searches in electron-proton collisions

- Recent motivation from LHCb anomalies ^{M_{LQ} [GeV]} (theory explanations typically involve 3rd generation).
- Phenomenology equivalent to R-parity violating SUSY.
- ATLAS limits 1.5 TeV for 1,2 generations [1902.00377]
- ► CMS limits 1 TeV [1901.03570]
- ► In ep collisions singly produced as *s* channel resonance.
- \Rightarrow Very sensitive to $1^{\rm st}$ generation.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

Wino and Higgsino Dark Matter

- WIMPs are still a viable solution for Thermal DM (e.g. in many SUSY extensions/regions)
- Being broadly probed by Direct and Indirect detection as well as Colliders
- At e-p colliders, wino and higgsino DM can be searched for using disappearing track analyses

Christian Schwanenberger

BSM searches at electron-proton colliders overview

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Long-lived Higgsino searches

- Production via vector boson fusion
- Charginos can have very short lifetime $c\tau \sim \mu$ m.
- Decay products $P_T = \mathcal{O}(100)$ MeV
- Beam remnant jet \Rightarrow primary vertex with $\mathcal{O}(10) \, \mu$ m precision
- Signal: single soft displaced pion.
- Looks like hadronic noise, but can be detected at ep colliders!

· • =

BSM searches at electron-proton colliders overview

5 / 12

Э.

æ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Christian Schwanenberger

BSM searches at electron-proton colliders overview

Dark Sectors

- Portal models to test generic dark sectors as benchmarks as discussed at the ESPP.
- New results from e-p presented in Granada and being documented.
- Vector portal:
 - Vector mediator (dark photon) for light thermal Dark Matter
 - New mass scale in the MeV-GeV range, feebly-coupled to SM
- Scalar portals:
 - Higgs decays into a pair of long-lived fermionic particles X.
 - Recastable into renormalizable models.
- Pseudo-scalar portals:
 - Search for axions/ALPs in the MeV-tens of GeV range.
 - Signature (e.g. diphoton) can allow determination of its mass.

 $(\mu S + \lambda S^2)H^{\dagger}H$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ - 豆

Dark Photons at the LHeC and the FCC-he

from G. Lanfranchi, Granada

Electron-proton colliders can close a mass gap around 1 GeV

via searches for displaced decays?

Christian Schwanenberger

BSM searches at electron-proton colliders overview

7 / 12

э.

₹.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Scalar portal at the LHeC and the FCC-he

Recast from exotic Higgs decays into LLPs from: Curtin, Deshpande, Fischer, Zurita; [arXiv:1712.07135]

- ► Higgs decays into a pair of long-lived scalar particles S.
- Scalars decay into the heaviest SM fermion: $S \rightarrow f\bar{f}$.
- Assumption: $P_T(f) > 400$ MeV, displacement $> 50 \,\mu$ m with 100% detection efficiency

Christian Schwanenberger

BSM searches at electron-proton colliders overview

Pseudoscalar portal at the LHeC and the FCC-he

Prospects for LHeC with 1/ab and FCC-he with 3/ab

- Alp production from electron-photon scattering.
- Signature: diphoton with invariant mass $\sim m_{\rm Alp}$.
- Gray: present exclusion limits.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Pseudoscalar portal at the LHeC and the FCC-he Prospects for LHeC with 1/ab and FCC-he with 3/ab

- Alp production from electron-photon scattering.
- Signature: diphoton with invariant mass $\sim m_{\rm Alp}$.
- Gray: present exclusion limits.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sterile neutrinos at future electron-proton colliders

- Lowscale seesaw models allow large production xsections at colliders.
- Paramters: mass M_N and the active-sterile mixing angles θ_{α}
- Present constraints: $|\theta_e| \le 10^{-5}$,
- Comprehensive comparison between collider types in

Antusch et al. Int. J. Mod. Phys. A 32 (2017) no.14, 1750078

- Promising at ep:
 - lepton-flavor violating final states: $\mu\,{+}{\rm jets},\,\tau\,{+}\,{\rm jets}$
 - displaced vertices for $M_N < m_W$.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

10 / 12

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Many other studies

- Light Sleptons and EWkinos
- Prompt EWkinos
- Charged scalar bosons
- Effective Majorana Neutrino Interactions and Polarization

Duarte, Zapata, Sampayo; [arXiv:1802.07620]

- Georgi-Machacheck model
- Extended Higgs sectors

Azuelos, Sun, Wang; [arXiv:1712.07505]

Liu, Tang, Zhang, Zhu; [arXiV:1608.08458]

Sun, Luo, Wei, Liu; [arXiv:1710.06284]

Hernández-Sánchez, Flores-Sánchez, Honorato, Moretti, Rosado; [arXiv:1612.06316]

Leptoquarks and Heavy Neutrinos at the LHeC

S. Mandal, M. Mitra and N. Sinha; Phys. Rev. D 98 (2018) no.9, 095004

- ► RPV SUSY.
- Exotic/rare top decays.

Christian Schwanenberger

BSM searches at electron-proton colliders overview

11 / 12

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

K. Wang, S. Iwamoto, M. D'Onofrio, G. Azuelos

Han, Li, Pan, Wang, [arXiv:1802.03679]

Azuelos, Sun, Wang; [arXiv:1712.07505]

Conclusions

- ep collider are complementary to pp and ee colliders. (Essential to fully exploit pp measurements due to PDF.)
- They offer a variety of opportunities for BSM searches.
- Ideal to study properties of new particles with couplings to electron-quark
- New opportunities for displaced signatures from LLPs:
 - Great reach for short lifetimes
 - Well suited to find signal that looks like hadronic noise.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ の < @