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FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions…

Lots of data available  (LHCb, Belle II)

several �  observables in tension with SMb → sμμFlavour anomalies

Key channel for indirect NP searches

Can we improve its description at experiments?

Can we use it to extract bounds on NP in �  ?
b → sττ

drawingcit. fit people?�B+ → K+μ+μ−
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4GF
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Effective field theory description

ℒeff =
4GF

2
VtbV*ts ∑

i

Ci(μ) Oi ,

Local (short distance)

and/or new operatorsCSM
i → CSM

i + δCNP
iNP

•      CSM
i

•              for            B → Kf+ , f0 , fTZ
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Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, 
and are included via C9

C9 → Ceff
9 (q2) = C9 + Y(q2)

cannot be applied in the full kinematical range :

Pert. contribution + expansion in Λ2
QCD /(q2 − 4m2

c )
[Khodjamirian et al., 1212.0234]

Z

“charm loop”

…intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.

q2 > m2
J/ψ q2 > 4 m2

D

[Semi]perturbative approach valid at low     :q2
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Breit Wignerfit parameters

Y(q2) = ∑
j

ηj eiδj Ares
j (q2)

Long-distance effects at experiments 

Why working towards a better parametrisation?

• access long-distance info unaccessible from first principles [e.g. phases ]

• extract reliable short-distance info [hence NP!]

• Standard approach: exclude events close 
to resonances [Babar, Belle, CDF, CMS, LHCb…]

!5

• LHCb [2016] first fit to full spectrum, 
including  resonances: [LHCb 1612.06764]

[Lyon, Zwicky 1406.0566]
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We propose the following parametrisation of hadronic long-distance contributions:
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Our proposal in a nutshell

ΔC1P
qq̄ (q2) = ∑

j

ηj eiδjAres
j (q2)

Light resonances (ρ, ω, ϕ)

Y(q2) = Y0 + ΔC1P
qq̄ (q2) + ΔC1P

cc̄ (q2) + ΔC2P
cc̄ (q2)

charm up

constraint:

What is new? 

Ceff
9 (q2) = C9 + Y(q2) ,

• inclusion of contribution from two-particle intermediate cc statescc̄

• subtraction in            :                       , remainder inΔCnP
ff̄ (0) = 0 Y0q2 = 0

1P exchange 2P exchange

|ΔC1P
q̄q(0) | = 𝒪 (

ΛQCD

mb ) ⋅ ≈ 0CKM

suppression
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Contributions from two-particle intermediate states present a “cusp” at the 
kinematical threshold for on-shell production:

D*D

D*D*
D Dβ3

β
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Consider a NP scenario where a large �  is generated:C9τ

Oτ
9 ∼ (s̄γμPLb)(τ̄γμτ)

[e.g. combined expl. of 
B anomalies…]                

ℬexp(B+ → K+τ+τ−) < 2.25 ⋅ 10−3 [Babar] ℬSM(B+ → K+τ+τ−) = 1.2 ⋅ 10−7

ΔC2P
τ̄τ (q2) =

• cusp at �q2 = 4m2
τ

Z Preliminary sensitivity @ LHCb [with Run 2 statistics]: 𝓑(B+ → K+τ+τ−) ≲ 𝓞(10−4)

Probing �  directly is experimentally challenging…b → sττ

• alter �  dependence above/below thresholdq2
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The             cusp τ − τ

resonances only 

resonances + �  ττ
assuming �  Babar upper limit (for illustration)ℬ(B+ → K+τ+τ−) =

[LHCb 1612.06764]
res. parameters from
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Conclusions and outlook

A precise description of the �  spectrum at experiments is crucial to extract 
reliable information. We propose an improved parameterisation of long-distance 
effects, including the contribution from 1 and 2-particle intermediate states.
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• detailed study on realistic sensitivity expected at LHCb with Run II statistics 
(and possibly beyond)

In progress:

• extensions to other channels, e.g. B → K*μ+μ−

Preliminary studies of the expected sensitivity at LHCb with Run II statistics 
suggest the possibility of constraining NP in �  through its imprint on the 
spectrum of � .

b → sττ
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Thank you! 


