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Key channel for indirect NP searches
FCNC, hence suppressed in SM

NP could modify decay rates, angular distributions...

Flavour anomalies several b — 5111 observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of B — K utu—:
Can we improve its description at experiments?

Can we use it to extract bounds on NP in b — st ?
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Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator,

and are included via
Cy — CSﬁ(qz) = Cy + Y(g?)

[Semilperturbative approach valid at low ¢*:

“charm loop”
Pert. contribution + expansion in Aj.,/(g° — 4m)
[Khodjamirian et al., 1212.0234]
o, 7\5 cannot be applied in the full kinematical range :
c c
A K
¥ 3
> " ¢
‘.k /"“Y
PR
q* > mj, g* > 4m?

...Intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.
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Why working towards a better parametrisation?

e access long-distance info unaccessible from first principles [e.g. phases ]

e extract reliable short-distance info [hence NP!]
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Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

1P exchange 2P exchange

S —~

Cs(gH = Co+ VgD, Y(g) =Y+ Ac“’<q2> + ACH (g + ACF(g7)

What is new?

| -

up charm

e inclusion of contribution from two-particle intermediate cc states

e constraints from perturbative charm loops at low q2

e subtractionin ¢>=0: AC“P(O) 0, remainder in ¥,

Light resonances (p, ®, ¢)
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Charm contribution

Charmonium resonances (J/y, yw(2S),...)
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Constraining NP in taus...from muons?

Consider a NP scenario where a large C,_ is generated:

b s .
OF ~ (57 P. )3 [e.g. combined expl. of
. % o~ r LI B anomalies...]

Probing b — st directly is experimentally challenging...
Beop(BY = K*1177) < 2.25- 107 [Babar BB = Kttty =12-1077

...can we get a competitive bound from the B* — K*u*u~spectrum?

b S
>

e e cusp at g = 4m?

ACH(q) = 2
¥ e alter g~ dependence above/below threshold

> >

M- [t

Preliminary sensitivity @ LHCb [with Run 2 statistics]: BBt - K*tt7t7) < 6(107%)
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Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run Il statistics
suggest the possibility of constraining NP in b — sz7 through its imprint on the
spectrum of Bt — K u*u~.

A precise description of the ¢” spectrum at experiments is crucial to extract
reliable information. We propose an improved parameterisation of long-distance
effects, including the contribution from 1 and 2-particle intermediate states.

In progress:

e detailed study on realistic sensitivity expected at LHCb with Run Il statistics
(and possibly beyond)

e extensions to other channels, e.g. B = K*u*u~
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Thank you!
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