Charm and tau loop effects in $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

Claudia Cornella

University of Zurich
based on ongoing work with G.Isidori, M.König, S. Liechti, P. Owen, N.Serra

Key channel for indirect NP searches
FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Key channel for indirect NP searches

FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Key channel for indirect NP searches
FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Key channel for indirect NP searches
FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

$$
\text { Dimuon spectrum of } B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}:
$$

Key channel for indirect NP searches

FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$:

Can we improve its description at experiments?

Key channel for indirect NP searches

FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$:

Can we improve its description at experiments?
Can we use it to extract bounds on NP in $b \rightarrow s \tau \tau$?

Effective field theory description

EFT for $b \rightarrow s \mu \mu: \quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM} \begin{cases}O_{9}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \mu\right) & O_{10}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \gamma_{5} \mu\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & O_{1-6}, O_{8}\end{cases}$
NP $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

Effective field theory description

EFT for $b \rightarrow s \mu \mu: \quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,

$$
\begin{aligned}
& \mathrm{SM} \begin{cases}O_{9}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \mu\right) & O_{10}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \gamma_{5} \mu\right) \\
O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & O_{1-6}, O_{8}\end{cases} \\
& \mathrm{NP} \quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{\text {NP }} \text { and/or new operators }
\end{aligned}
$$

Local (short distance)

Effective field theory description

EFT for $b \rightarrow s \mu \mu: \quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,

$$
\begin{aligned}
& \mathrm{SM} \begin{cases}O_{9}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \mu\right) & O_{10}^{\mu}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\mu} \gamma^{\mu} \gamma_{5} \mu\right) \\
O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & O_{1-6}, O_{8}\end{cases} \\
& \mathrm{NP} \quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{\text {NP }} \text { and/or new operators }
\end{aligned}
$$

Local (short distance)

- $C_{i}^{\text {SM }}$
- f_{+}, f_{0}, f_{T} for $B \rightarrow K$

Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[Semi]perturbative approach valid at low q^{2} : Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[Semi]perturbative approach valid at low q^{2} : Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

...intrinsically non perturbative objects!

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[Semi]perturbative approach valid at low q^{2} :
Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

...intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.

Long-distance effects at experiments
light resonances

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

$$
Y\left(q^{2}\right)=\sum_{j} \eta_{\jmath} e_{\uparrow} \underbrace{i \delta_{j}} \underbrace{A_{j}^{\mathrm{res}}\left(q^{2}\right)}
$$

fit parameters Breit Wigner

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

$$
Y\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \underbrace{A_{j}^{\mathrm{res}}\left(q^{2}\right)}
$$

fit parameters
Breit Wigner

Why working towards a better parametrisation?

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

$$
Y\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \underbrace{A_{j}^{\mathrm{res}}\left(q^{2}\right)}
$$

fit parameters Breit Wigner

Why working towards a better parametrisation?

- access long-distance info inaccessible from first principles [e.g. phases]

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

$$
Y\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \underbrace{A_{j}^{\mathrm{res}}\left(q^{2}\right)}
$$

fit parameters Breit Wigner

Why working towards a better parametrisation?

- access long-distance info inaccessible from first principles [e.g. phases]
- extract reliable short-distance info [hence NP!]

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \qquad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\underbrace{1 \mathrm{P} \text { exchange }}_{\underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}+\underbrace{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 \mathrm{P}}}_{\text {charm }} \\
& \text { What is new? }
\end{aligned}
$$

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \qquad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\underbrace{1 \mathrm{P} \text { exchange }}_{\underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}+\underbrace{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 \mathrm{P}}}_{\text {charm }} \\
& \text { What is new? }
\end{aligned}
$$

- inclusion of contribution from two-particle intermediate $c \bar{c}$ states

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \quad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\underbrace{1 \mathrm{P} \text { exchange }}_{\underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}+\underbrace{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 \mathrm{P}}}_{\text {charm }} \\
& \text { What is new? }
\end{aligned}
$$

- inclusion of contribution from two-particle intermediate $c \bar{c}$ states
- constraints from perturbative charm loops at low q^{2}

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \quad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\underbrace{1 \mathrm{P} \text { exchange }}_{\underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}+\underbrace{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 \mathrm{P}}}_{\text {charm }} \\
& \text { What is new? }
\end{aligned}
$$

- inclusion of contribution from two-particle intermediate $c \bar{c}$ states
- constraints from perturbative charm loops at low q^{2}
- subtraction in $q^{2}=0: \Delta C_{f \bar{f}}^{\mathrm{nP}}(0)=0$, remainder in Y_{0}

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \quad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\overbrace{\Delta \underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}^{1 \mathrm{P} \text { exchange }}+\underbrace{\text { What is new? }}_{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 P}}
\end{aligned}
$$

- inclusion of contribution from two-particle intermediate $c \bar{c}$ states
- constraints from perturbative charm loops at low q^{2}
- subtraction in $q^{2}=0: \Delta C_{f \bar{f}}^{\mathrm{nP}}(0)=0$, remainder in Y_{0}

Light resonances (ρ, ω, ϕ)

$$
\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{\mathrm{res}}\left(q^{2}\right)
$$

Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

$$
\begin{aligned}
& \quad C_{9}^{\text {eff }}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right), \quad Y\left(q^{2}\right)=Y_{0}+\underbrace{1 \mathrm{P} \text { exchange }}_{\underbrace{\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)}_{\text {up }}}+\underbrace{\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\overbrace{\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)}^{2 \mathrm{P}}}_{\text {charm }} \\
& \text { What is new? }
\end{aligned}
$$

What is new?

What is new?

- inclusion of contribution from two-particle intermediate $c \bar{c}$ states
- constraints from perturbative charm loops at low q^{2}
- subtraction in $q^{2}=0: \Delta C_{f \bar{f}}^{\mathrm{nP}}(0)=0$, remainder in Y_{0}

Light resonances (ρ, ω, ϕ)

$$
\Delta C_{q \bar{q}}^{1 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{\mathrm{res}}\left(q^{2}\right)
$$

$$
\text { constraint: } \quad\left|\Delta C_{\bar{q} q}^{1 \mathrm{P}}(0)\right|=\mathcal{O}\left(\frac{\Lambda_{Q C D}}{m_{b}}\right) \text {. } \underset{\text { suppression }}{\text { CKM }} \approx 0
$$

Charm contribution

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

Two-particle $\overline{\boldsymbol{c}} \boldsymbol{c}$ states $\left(D D, D^{*} D^{*}, D D^{*}\right)$

Charm contribution

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

$$
\Delta C_{c \bar{c}}^{\mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \frac{q^{2}}{m_{j}^{2}} A_{j}^{\mathrm{res}}\left(q^{2}\right)
$$

Two-particle $\bar{c} c$ states $\left(D D, D^{*} D^{*}, D D^{*}\right)$

Charm contribution

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

$$
\Delta C_{c \bar{c}}^{\mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \frac{q^{2}}{m_{j}^{2}} A_{j}^{\mathrm{res}}\left(q^{2}\right)
$$

Two-particle $\bar{c} c$ states $\left(D D, D^{*} D^{*}, D D^{*}\right)$

$$
\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{j}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}^{j}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{j}(\tilde{s})}{(\tilde{s}-s)},
$$

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

$$
\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} \frac{q^{2}}{m_{j}^{2}} A_{j}^{\mathrm{res}}\left(q^{2}\right)
$$

Two-particle $\bar{c} c$ states $\left(D D, D^{*} D^{*}, D D^{*}\right)$

$$
\begin{aligned}
& \Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{j}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}^{j}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{j}(\tilde{s})}{(\tilde{s}-s)},
\end{aligned}
$$

Charm contribution

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

$$
\Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta j} \frac{q^{2}}{m_{j}^{2}} A_{j}^{\mathrm{res}}\left(q^{2}\right),
$$

Two-particle $\bar{c} c$ states ($\left.D D, D^{*} D^{*}, D D^{*}\right)$

$$
\begin{aligned}
& \Delta C_{c \tilde{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{j}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}^{j}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{j}(\tilde{s})}{(\tilde{s}-s)}, \\
& \rho(s)=\operatorname{Im}\left\{\begin{array}{l}
\underset{D^{(s)}\left(\int D^{* s)}\right.}{\boldsymbol{B}}
\end{array}\right\} \sim\left\{\begin{array}{ll}
\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} & D D \\
\underset{\mu}{\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}} & D^{*} D^{*} \\
\left(1-\frac{4 m_{D}^{2}}{s}\right)^{1 / 2} & D^{*} D
\end{array}\right\} \begin{array}{l}
\text { dominant } \\
\text { contribution }
\end{array}
\end{aligned}
$$

Charm contribution

Charmonium resonances $(J / \psi, \psi(2 S), \ldots)$

$$
\Delta C_{c \bar{c}}^{\mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta j} \frac{q^{2}}{m_{j}^{2}} A_{j}^{\mathrm{res}}\left(q^{2}\right),
$$

Two-particle $\bar{c} c$ states ($\left.D D, D^{*} D^{*}, D D^{*}\right)$

$$
\begin{aligned}
& \Delta C_{c \tilde{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{j}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}^{j}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{j}(\tilde{s})}{(\tilde{s}-s)}, \\
& \rho(s)=\operatorname{Im}\left\{\begin{array}{l}
\underset{D^{(s)}\left(\int D^{* s)}\right.}{\boldsymbol{B}}
\end{array}\right\} \sim\left\{\begin{array}{ll}
\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} & D D \\
\underset{\mu}{\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}} & D^{*} D^{*} \\
\left(1-\frac{4 m_{D}^{2}}{s}\right)^{1 / 2} & D^{*} D
\end{array}\right\} \begin{array}{l}
\text { dominant } \\
\text { contribution }
\end{array}
\end{aligned}
$$

constraint: $\quad q^{2} \ll m_{c}^{2} \quad \Delta C_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta C_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\Delta C_{c \bar{c}}^{\text {pert }}\left(q^{2}\right)$

Two-particle intermediate states: cusps

Contributions from two-particle intermediate states present a "cusp" at the kinematical threshold for on-shell production:

Two-particle intermediate states: cusps

Contributions from two-particle intermediate states present a "cusp" at the kinematical threshold for on-shell production:

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...

$$
\mathscr{B}_{\exp }\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3} \quad[\mathrm{Babar}] \quad \mathscr{B}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}
$$

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...
$\mathscr{B}_{\text {exp }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3}{ }_{\text {[Babar] }} \quad \mathscr{B}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}$
...can we get a competitive bound from the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum?

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...
$\mathscr{B}_{\text {exp }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3}{ }_{[B a b a r]} \quad \mathscr{B}_{\text {SM }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}$
...can we get a competitive bound from the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum?

$$
\Delta C_{\bar{\tau} \tau}^{2 P}\left(q^{2}\right)=
$$

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...
$\mathscr{B}_{\text {exp }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3}{ }_{[B a b a r]} \quad \mathscr{B}_{\text {SM }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}$
...can we get a competitive bound from the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum?

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of
B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...
$\mathscr{B}_{\text {exp }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3}{ }_{[B a b a r]} \quad \mathscr{B}_{\text {SM }}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}$
...can we get a competitive bound from the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum?

$$
\Delta C_{\bar{\tau} \tau}^{2 P}\left(q^{2}\right)=
$$

- cusp at $q^{2}=4 m_{\tau}^{2}$
- alter q^{2} dependence above/below threshold

Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9 \tau}$ is generated:

$$
O_{9}^{\tau} \sim\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\tau} \gamma^{\mu} \tau\right)
$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s \tau \tau$ directly is experimentally challenging...
$\mathscr{B}_{\exp }\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3} \quad[\mathrm{Babar}] \quad \mathscr{B}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}$
...can we get a competitive bound from the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum?

- cusp at $q^{2}=4 m_{\tau}^{2}$
- alter q^{2} dependence above/below threshold

Preliminary sensitivity @ LHCb [with Run 2 statistics]: $\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim \mathscr{O}\left(\mathbf{1 0}^{-4}\right)$

The $\tau-\tau$ cusp

resonances only res. parameters from [LHCb 1612.06764]

resonances $+\tau \tau$

$$
q^{2}=m_{\mu \mu}^{2}
$$

assuming $\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=$Babar upper limit (for illustration)

Conclusions and outlook

Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \rightarrow s \tau \tau$ through its imprint on the spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$.

Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \rightarrow s \tau \tau$ through its imprint on the spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$.

A precise description of the q^{2} spectrum at experiments is crucial to extract reliable information. We propose an improved parameterisation of long-distance effects, including the contribution from 1 and 2-particle intermediate states.

Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \rightarrow s \tau \tau$ through its imprint on the spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$.

A precise description of the q^{2} spectrum at experiments is crucial to extract reliable information. We propose an improved parameterisation of long-distance effects, including the contribution from 1 and 2-particle intermediate states.

In progress:

- detailed study on realistic sensitivity expected at LHCb with Run II statistics (and possibly beyond)
- extensions to other channels, e.g. $B \rightarrow K^{*} \mu^{+} \mu^{-}$

Thank you!

