Charm and tau loop effects in $B^+ \rightarrow K^+ \mu^+ \mu^-$

Claudia Cornella
University of Zurich

based on ongoing work with G.Isidori, M.König, S. Liechti, P. Owen, N.Serra
Key channel for indirect NP searches

- FCNC, hence suppressed in SM
- NP could modify decay rates, angular distributions…
Key channel for indirect NP searches

FCNC, hence suppressed in SM

NP could modify decay rates, angular distributions...

Flavour anomalies several $b \to s\mu\mu$ observables in tension with SM
Key channel for indirect NP searches

FCNC, hence suppressed in SM

NP could modify decay rates, angular distributions…

Flavour anomalies several $b \to s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)
Key channel for indirect NP searches

- FCNC, hence suppressed in SM
- NP could modify decay rates, angular distributions…

Flavour anomalies several $b \rightarrow s \mu \mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of $B^+ \rightarrow K^+ \mu^+ \mu^-$:
Key channel for indirect NP searches

FCNC, hence suppressed in SM

NP could modify decay rates, angular distributions...

Flavour anomalies several $b \rightarrow s\mu\mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of $B^+ \rightarrow K^+\mu^+\mu^-$:

Can we improve its description at experiments?
Key channel for indirect NP searches

FCNC, hence suppressed in SM
NP could modify decay rates, angular distributions…

Flavour anomalies several $b \rightarrow s\mu\mu$ observables in tension with SM

Lots of data available (LHCb, Belle II)

Dimuon spectrum of $B^+ \rightarrow K^+\mu^+\mu^-$:
Can we improve its description at experiments?
Can we use it to extract bounds on NP in $b \rightarrow s\tau\tau$?
Effective field theory description

EFT for $b \to s\mu\mu$:

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i,$$

\[
\begin{align*}
O_9^\mu &= \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b)(\bar{\mu} \gamma^\mu \mu) \\
O_7 &= \frac{e}{16\pi^2} m_b (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu} \\
O_{10}^\mu &= \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b)(\bar{\mu} \gamma^\mu \gamma_5 \mu)
\end{align*}
\]

SM

$$O_9^\mu, O_7, O_{10}^\mu, O_{1-6}, O_8$$

NP

$$C_i^{\text{SM}} \to C_i^{\text{SM}} + \delta C_i^{\text{NP}}$$ and/or new operators
Effective field theory description

EFT for $b \rightarrow s\mu\mu$:

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i,$$

where

$$O_9^\mu = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu \mu)$$

$$O_{10}^\mu = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu \gamma_5 \mu)$$

$$O_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu}$$

SM

NP

$$C_i^{\text{SM}} \rightarrow C_i^{\text{SM}} + \delta C_i^{\text{NP}}$$

and/or new operators

Local (short distance)
Effective field theory description

EFT for $b \rightarrow s \mu \mu$:

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i,$$

where:

$$O_9^\mu = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b)(\bar{\mu} \gamma^\mu \mu)$$

$$O_{10}^\mu = \frac{e^2}{16\pi^2} (\bar{s} \gamma_\mu P_L b)(\bar{\mu} \gamma^\mu \gamma_5 \mu)$$

$$O_7 = \frac{e}{16\pi^2} m_b (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu}$$

SM

NP

$$C_i^{\text{SM}} \rightarrow C_i^{\text{SM}} + \delta C_i^{\text{NP}}$$ and/or new operators

Local (short distance)

- C_i^{SM}
- f_+, f_0, f_T for $B \rightarrow K$
Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

\[C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + Y(q^2) \]
Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

\[C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + Y(q^2) \]
Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

\[C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + Y(q^2) \]

[Semi]perturbative approach valid at low \(q^2 \):

Pert. contribution + expansion in \(\Lambda_{QCD}^2/(q^2 - 4m_c^2) \)

[Khodjamirian et al., 1212.0234]

cannot be applied in the full kinematical range:
Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

\[C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + Y(q^2) \]

[Semi]perturbative approach valid at low \(q^2 \):

Pert. contribution + expansion in \(\Lambda_{QCD}^2/(q^2 - 4m_c^2) \)

[Khodjamirian et al., 1212.0234]

cannot be applied in the full kinematical range:

- \(q^2 > m_{J/\psi}^2 \)
- \(q^2 > 4m_D^2 \)

...intrinsically **non** perturbative objects!
Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator, and are included via

\[
C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + Y(q^2)
\]

[Semiperturbative] approach valid at low \(q^2 \):
Pert. contribution + expansion in \(\Lambda_{QCD}^2/(q^2 - 4m_c^2) \) [Khodjamirian et al., 1212.0234]

cannot be applied in the full kinematical range:

- \(q^2 > m_{J/\psi}^2 \)
- \(q^2 > 4m_D^2 \)

...intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.
Long-distance effects at experiments
Long-distance effects at experiments

- Standard approach: exclude events close to resonances
 [Babar, Belle, CDF, CMS, LHCb…]
Long-distance effects at experiments

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb…]

- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

\[Y(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2) \]

fit parameters Breit Wigner
Long-distance effects at experiments

Why working towards a better parametrisation?

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb…]
- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

\[Y(q^2) = \sum_j \eta_j e^{i\delta_j} A^\text{res}_j(q^2) \]

fit parameters Breit Wigner
Long-distance effects at experiments

Why working towards a better parametrisation?

- access long-distance info unaccessible from first principles [e.g. phases]

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb…]

- LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

\[Y(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2) \]

Breit Wigner
Long-distance effects at experiments

Why working towards a better parametrisation?

- access long-distance info unaccessible from first principles [e.g. phases]
- extract reliable short-distance info [hence NP!]

Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb…]

LHCb [2016] first fit to full spectrum, including resonances: [LHCb 1612.06764] [Lyon, Zwicky 1406.0566]

\[Y(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2) \]

Bret Wigner
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[C_9^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{qq}^{1P}(q^2) + \Delta C_{cc}^{1P}(q^2) + \Delta C_{cc}^{2P}(q^2) \]

1P exchange

2P exchange

up

ccharm
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[C_9^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{qq}^{1P}(q^2) + \Delta C_{cc}^{1P}(q^2) + \Delta C_{c\bar{c}}^{2P}(q^2) \]

What is new?
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[
C_9^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{qq}^{1P}(q^2) + \Delta C_{cc}^{1P}(q^2) + \Delta C_{cc}^{2P}(q^2)
\]

What is new?

- inclusion of contribution from two-particle intermediate $c\bar{c}$ states
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[C_9^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C^{1P}_{qq}(q^2) + \Delta C^{1P}_{cc}(q^2) + \Delta C^{2P}_{cc}(q^2) \]

What is new?

- inclusion of contribution from two-particle intermediate $c\bar{c}$ states
- constraints from perturbative charm loops at low q^2
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[C_{9}^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{qq}^{1P}(q^2) + \Delta C_{cc}^{1P}(q^2) + \Delta C_{c\bar{c}}^{2P}(q^2) \]

What is new?

- inclusion of contribution from two-particle intermediate \(c\bar{c} \) states
- constraints from perturbative charm loops at low \(q^2 \)
- subtraction in \(q^2 = 0: \Delta C_{ff}^{nP}(0) = 0 \), remainder in \(Y_0 \)
Our proposal in a nutshell

We propose the following parametrisation of hadronic long-distance contributions:

\[C_9^\text{eff}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{qq}^{1P}(q^2) + \Delta C_{cc}^{1P}(q^2) + \Delta C_{c\bar{c}}^{2P}(q^2) \]

What is new?

- inclusion of contribution from two-particle intermediate \(c\bar{c} \) states
- constraints from perturbative charm loops at low \(q^2 \)
- subtraction in \(q^2 = 0: \Delta C_{ff}^{nP}(0) = 0 \), remainder in \(Y_0 \)

Light resonances \((\rho, \omega, \phi)\)

\[\Delta C_{qq}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2) \]
We propose the following parametrisation of hadronic long-distance contributions:

\[
C_9^{\text{eff}}(q^2) = C_9 + Y(q^2), \quad Y(q^2) = Y_0 + \Delta C_{q\bar{q}}^{1P}(q^2) + \Delta C_{c\bar{c}}^{1P}(q^2) + \Delta C_{c\bar{c}}^{2P}(q^2)
\]

What is new?

- inclusion of contribution from two-particle intermediate \(c\bar{c}\) states
- constraints from perturbative charm loops at low \(q^2\)
- subtraction in \(q^2 = 0\): \(\Delta C_{\bar{f}f}^{nP}(0) = 0\), remainder in \(Y_0\)

Light resonances \((\rho, \omega, \phi)\)

\[
\Delta C_{q\bar{q}}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2)
\]

constraint: \(|\Delta C_{q\bar{q}}^{1P}(0)| = \mathcal{O} \left(\frac{\Lambda_{QCD}}{m_b} \right) \). CKM suppression \(\approx 0\)
Charm contribution

Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

Two-particle \(\bar{c}c\) states \((DD, D^* D^*, DD^*)\)
Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

\[
\Delta C_{c\bar{c}}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} \frac{q^2}{m_j^2} A_{j}^{\text{res}}(q^2),
\]

Two-particle \(\bar{c}c\) states \((D\bar{D}, D^*\bar{D}^*, DD^*)\)
Charm contribution

Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

\[
\Delta C_{c\bar{c}}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} \frac{q^2}{m_j^2} A_j^{\text{res}}(q^2),
\]

Two-particle \(\bar{c}c\) states \((D D, D^* D^*, DD^*)\)

\[
\Delta C_{c\bar{c}}^{2P}(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{2P}(q^2) \quad \quad A_j^{2P}(s) = \frac{s}{\pi} \int_{s_0}^{\infty} \frac{d\tilde{s}}{\tilde{s}} \frac{\rho_j(\tilde{s})}{(\tilde{s} - s)},
\]
Charm contribution

Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

\[
\Delta C^{1P}_{c\bar{c}}(q^2) = \sum_j \eta_j e^{i\delta_j} \frac{q^2}{m_j^2} A_j^{\text{res}}(q^2),
\]

Two-particle \(\bar{c}c\) states \((D D, D^* D^*, D D^*)\)

\[
\Delta C^{2P}_{c\bar{c}}(q^2) = \sum_j \eta_j e^{i\delta_j} A^{2P}_j(q^2),
\]

\[
A_j^{2P}(s) = \frac{s}{\pi} \int_{s_0}^{\infty} \frac{d\tilde{s}}{\tilde{s}} \frac{\rho_j(\tilde{s})}{(\tilde{s} - s)},
\]

\[
\rho(s) = \text{Im} \left\{ \frac{g}{\kappa} \frac{\bar{c}c}{D^{(w)}_{D^{(w)}}} \right\} \sim \left\{ \begin{array}{l} \left(1 - \frac{4m_D^2}{s}\right)^{3/2} \text{ } D D \\ \left(1 - \frac{4m_{D^*}^2}{s}\right)^{3/2} \text{ } D^* D^* \\ \left(1 - \frac{4m_D^2}{s}\right)^{1/2} \text{ } D^* D \end{array} \right.
\]

Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

Two-particle \(\bar{c}c\) states \((D D, D^* D^*, D D^*)\)
Charm contribution

Charmonium resonances \((J/\psi, \psi(2S), \ldots)\)

\[
\Delta C_{cc\bar{c}}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} \frac{q^2}{m_j^2} A_j^{\text{res}}(q^2),
\]

Two-particle \(\bar{c}c\) states \((DD, D^* D^*, DD^*)\)

\[
\Delta C_{cc\bar{c}}^{2P}(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{2P}(q^2)
\]

\[
A_j^{2P}(s) = \frac{s}{\pi} \int_{s_0}^{\infty} d\tilde{s} \frac{\rho_j(\tilde{s})}{\tilde{s} (\tilde{s} - s)},
\]

\[
\rho(s) = \text{Im} \left\{ \frac{B}{D} \right\} \sim \left\{ \begin{array}{l}
\left(1 - \frac{4m_D^2}{s} \right)^{3/2} \\
\left(1 - \frac{4m_{D^*}^2}{s} \right)^{3/2} \\
\left(1 - \frac{4m_D^2}{s} \right)^{1/2}
\end{array} \right\} \text{ dominant contribution}
\]

\(\bar{c}c\) dominant contribution
Charmonium resonances \((J/\psi, \psi(2S), ...)\)

\[
\Delta C_{cc\bar{c}}^{1P}(q^2) = \sum_j \eta_j e^{i\delta_j} \frac{q^2}{m_j^2} A_j^{\text{res}}(q^2),
\]

Two-particle \(\bar{c}c\) states \((D D, D^* D^*, D D^*)\)

\[
\Delta C_{cc\bar{c}}^{2P}(q^2) = \sum_j \eta_j e^{i\delta_j} A_j^{2P}(q^2)
\]

\[
A_j^{2P}(s) = \frac{s}{\pi} \int_{s_0}^{\infty} \frac{d\tilde{s}}{\tilde{s}} \frac{\rho_j(\tilde{s})}{(\tilde{s} - s)},
\]

\[
\rho(s) = \text{Im} \left\{ \frac{B}{D^{(s)} \bar{D}^{(s)}} \right\} \sim \left\{ \begin{array}{ccc}
(1 - \frac{4m_D^2}{s})^{3/2} & D D \\
(1 - \frac{4m_{D^*}^2}{s})^{3/2} & D^* D^* \\
(1 - \frac{4m_D^2}{s})^{1/2} & D^* D \\
\end{array} \right\}
\]

dominant contribution

constraint: \(q^2 \ll m_c^2\) \(\Delta C_{cc\bar{c}}^{1P}(q^2) + \Delta C_{cc\bar{c}}^{2P}(q^2) = \Delta C_{cc\bar{c}}^{\text{pert}}(q^2)\)
Contributions from two-particle intermediate states present a “cusp” at the kinematical threshold for on-shell production:
Contributions from two-particle intermediate states present a "cusp" at the kinematical threshold for on-shell production:
Consider a NP scenario where a large $C_{9\tau}$ is generated:

\[O_9^\tau \sim (\bar{s} \gamma_\mu P_L b)(\bar{\tau} \gamma^\mu \tau) \]

[e.g. combined expl. of B anomalies...]
Consider a NP scenario where a large $C_{9\tau}$ is generated:

$$O_{9}^{\tau} \sim (s\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}\tau)$$

[e.g. combined expl. of B anomalies…]

Probing $b \to s\tau\tau$ directly is experimentally challenging…

$$\mathcal{B}_{\exp}(B^{+} \to K^{+}\tau^{+}\tau^{-}) < 2.25 \cdot 10^{-3} \quad \text{[Babar]}$$

$$\mathcal{B}_{\text{SM}}(B^{+} \to K^{+}\tau^{+}\tau^{-}) = 1.2 \cdot 10^{-7}$$
Consider a NP scenario where a large $C_{9\tau}$ is generated:

\[O_{9}^{\tau} \sim (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma_{\nu}\tau) \]

[e.g. combined expl. of B anomalies…]

Probing $b \rightarrow s\tau\tau$ directly is experimentally challenging…

\[\mathcal{B}_{\exp}(B^{+} \rightarrow K^{+}\tau^{+}\tau^{-}) < 2.25 \cdot 10^{-3} \quad \text{[Babar]} \]

\[\mathcal{B}_{SM}(B^{+} \rightarrow K^{+}\tau^{+}\tau^{-}) = 1.2 \cdot 10^{-7} \]

…can we get a competitive bound from the $B^{+} \rightarrow K^{+}\mu^{+}\mu^{-}$ spectrum?
Constraining NP in taus…from muons?

Consider a NP scenario where a large $C_{9\tau}$ is generated:

\[O_9^{\tau} \sim (\bar{s}\gamma_\mu P_L b)(\bar{\tau}\gamma^\mu \tau) \]

[e.g. combined expl. of B anomalies…]

Probing $b \to s\tau\tau$ directly is experimentally challenging…

\[\mathcal{B}_{\text{exp}}(B^+ \to K^+\tau^+\tau^-) < 2.25 \cdot 10^{-3} \quad \text{[Babar]} \] \[\mathcal{B}_{\text{SM}}(B^+ \to K^+\tau^+\tau^-) = 1.2 \cdot 10^{-7} \]

…can we get a competitive bound from the $B^+ \to K^+\mu^+\mu^-$ spectrum?

\[\Delta C_{\tilde{\tau}\tau}^{2P}(q^2) = \]
Constraining NP in taus…from muons?

Consider a NP scenario where a large $C_{9\tau}$ is generated:

\[O_9^\tau \sim (\bar{s}\gamma_\mu P_L b)(\bar{\tau}\gamma^\mu \tau) \]

Probing $b \to s\tau\tau$ directly is experimentally challenging...

\[
\mathcal{B}_{\text{exp}}(B^+ \to K^+\tau^+\tau^-) < 2.25 \times 10^{-3} \quad \text{[Babar]} \\
\mathcal{B}_{\text{SM}}(B^+ \to K^+\tau^+\tau^-) = 1.2 \times 10^{-7}
\]

...can we get a competitive bound from the $B^+ \to K^+\mu^+\mu^-$ spectrum?

\[
\Delta C_{\bar{\tau}\tau}^{2P}(q^2) = \begin{cases} \\
\text{cusp at } q^2 = 4m^2_{\tau} \\
\end{cases}
\]
Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9\tau}$ is generated:

$$O^\tau_9 \sim (\bar{s}\gamma_\mu P_L b)(\bar{\tau}\gamma^\mu \tau)$$

[e.g. combined expl. of B anomalies...]

Probing $b \to s\tau\tau$ directly is experimentally challenging...

$$\mathcal{B}_{\text{exp}}(B^+ \to K^+\tau^+\tau^-) < 2.25 \cdot 10^{-3} \quad \text{[Babar]} \quad \mathcal{B}_{\text{SM}}(B^+ \to K^+\tau^+\tau^-) = 1.2 \cdot 10^{-7}$$

...can we get a competitive bound from the $B^+ \to K^+\mu^+\mu^-$ spectrum?

$$\Delta C_{\tau\tau}^{2P}(q^2) = \begin{cases}
\text{cusp at } q^2 = 4m_\tau^2 \\
\text{alter } q^2 \text{ dependence above/below threshold}
\end{cases}$$
Constraining NP in taus...from muons?

Consider a NP scenario where a large $C_{9\tau}$ is generated:

$$O_9^\tau \sim (\bar{s}\gamma_\mu P_L b)(\bar{\tau}\gamma^\mu \tau)$$

[e.g. combined expl. of B anomalies...]

Probing $b \rightarrow s\tau\tau$ directly is experimentally challenging...

$$\mathcal{B}_{\text{exp}}(B^+ \rightarrow K^+\tau^+\tau^-) < 2.25 \cdot 10^{-3} \quad \text{[Babar]} \quad \mathcal{B}_{\text{SM}}(B^+ \rightarrow K^+\tau^+\tau^-) = 1.2 \cdot 10^{-7}$$

...can we get a competitive bound from the $B^+ \rightarrow K^+\mu^+\mu^-$ spectrum?

$$\Delta C_{\bar{\tau}\tau}^{2p}(q^2) =$$

- cusp at $q^2 = 4m_\tau^2$
- alter q^2 dependence above/below threshold

Preliminary sensitivity @ LHCb [with Run 2 statistics]: $\mathcal{B}(B^+ \rightarrow K^+\tau^+\tau^-) \lesssim \mathcal{O}(10^{-4})$
The $\tau - \tau$ cusp

resonances only

res. parameters from

[LHCb 1612.06764]

resonances + $\tau\tau$

assuming $\mathcal{B}(B^+ \rightarrow K^+\tau^+\tau^-) = \text{Babar upper limit (for illustration)}$
Conclusions and outlook
Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \rightarrow s\tau\tau$ through its imprint on the spectrum of $B^+ \rightarrow K^+\mu^+\mu^-$.
Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \rightarrow s\tau\tau$ through its imprint on the spectrum of $B^+ \rightarrow K^+\mu^+\mu^-$.

A precise description of the q^2 spectrum at experiments is crucial to extract reliable information. We propose an improved parameterisation of long-distance effects, including the contribution from 1 and 2-particle intermediate states.
Conclusions and outlook

Preliminary studies of the expected sensitivity at LHCb with Run II statistics suggest the possibility of constraining NP in $b \to s\tau\tau$ through its imprint on the spectrum of $B^+ \to K^+\mu^+\mu^-$. A precise description of the q^2 spectrum at experiments is crucial to extract reliable information. We propose an improved parameterisation of long-distance effects, including the contribution from 1 and 2-particle intermediate states.

In progress:
- detailed study on realistic sensitivity expected at LHCb with Run II statistics (and possibly beyond)
- extensions to other channels, e.g. $B \to K^*\mu^+\mu^-$
Thank you!