Data Scouting and Data Parking with the CMS High level Trigger

Swagata Mukherjee (On behalf of the CMS collaboration)

- III. Physikalisches Institut A
- RWTH Aachen University, Germany

EPS-HEP, 10-17 July, 2019 Ghent, Belgium

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

TRIGGER STRATEGY IN CMS AND SOME DRAWBACKS

Huge amount of data from LHC. Need to filter out online.
Filters based on theory/pheno bias. Store events with high p_T objects.
Low or zero sensitivity to new physics with low-mass.

Huge reduction in rate. We might be losing good events

Reconstruction in:

L1 trigger: hardware based, read-out of detector with coarse granularity, VERY FAST.
High Level Trigger (HLT): software based, full readout of detector with full granularity, FAST.
Offline: software based, no time constraint.

ONE WAY OUT FOR LOW MASS SEARCHES: SCOUTING

Data Scouting: technicalities in a nutshell

Di-jet resonance search: first successful application of scouting

What do we gain? From HEAVY to LIGHT

200<Mjjj<700 GeV 600<Mjj<1600 GeV accessible by accessible by H_T calo scouting **H**_T particle flow scouting 27 fb⁻¹ & 36 fb⁻¹ (13 TeV) ۰0³ $\sigma \ B \ A \ [pb]$ tri-jet search High CMS 95% CL limits massimass 10² Observed 35.9 fb⁻¹ (13 TeV) 10⁴ $\sigma \times B [pb]$ Expected CMS ±1 std. dev. Preliminary 10^{3} \pm 2 std. dev. 95% CL upper limits 10² Observed Expected di-jet search ± 1 std. deviation 10 ± 2 std. deviation 10 **RPV SUS** Theory (pp \rightarrow gg, $g \rightarrow$ qqq) Theory uncertainty 10^{-2} Region 1 Region 2 10- 10^{-3} Region 3 10^{-2} Region 4 scouti 10⁻⁴ RS graviton 10⁻³ 800 1000 1200 1400 1600 1800 2000 200 400 600 10⁻⁵ Resonance Mass [GeV] 2 З 5 **Searches involving jet substructure** RS Graviton mass [TeV]

techniques seems promising with PF scouting.

scouting

Going beyond hadronic scouting: Di-muon scouting trigger

Di-muon scouting trigger designed in 2015, improved in 2017

In 2017-onward version, very loose HLT requirement:

- At least 2 muons with $p_T > 3$ (1) GeV in 2017 (2018). No cut on invariant mass. Muon tracks should have Targeting endcap muons
 - >0 hit in pixel and overall >4 hits in tracker

Hits in muon chamber

Small excess ~330 MeV corresponds to $\phi \rightarrow K^+K^-$ decays where Kaons are misidentified as prompt muons.

Un-prescaled trigger

Di-muon scouting trigger

~90 fb⁻¹ data collected using di-muon scouting trigger in 2017 and 2018

7

Standard Model

Dark Sector

cross section is suppressed by ε^2

Scouting data can be used to test other models also

Search for dark photons (A') in dimuon channel.

For small mixing (ϵ), A' can be long-lived \rightarrow displaced muon-pair

For small mixing (ϵ), A' can be long-lived \rightarrow displaced muon-pair

BABAR / LHCb already put constrains in M(A')- ε plane

Search for dark photons (A') in dimuon channel. For small mixing (ϵ), A' can be long-lived \rightarrow displaced muon-pair CMS prompt dark-photon search in di-muon channel is in progress

Search for dark photons (A') in dimuon channel. For small mixing (ϵ), A' can be long-lived \rightarrow displaced muon-pair CMS prompt dark-photon search in di-muon channel is in progress

Published papers / public PAS using scouting data

Search for Narrow Resonances using the **dijet** Mass Spectrum in pp collisions at **7 TeV** CMS-PAS-EXO-11-094 <u>http://cds.cern.ch/record/1461223</u>

Search for narrow resonances in **dijet** final states at **8 TeV** with the novel CMS technique of data scouting, arxiv1604.08907, PRL 117, 031802 (2016)

Search for **dijet** resonances in proton-proton collisions at **I3 TeV** and constraints on dark matter and other models, arxiv1611.03568, PLB 769 (2017) 520

Search for narrow and broad **dijet** resonances in proton-proton collisions at **I3 TeV** and constraints on dark matter mediators and other new particles, arxiv1806.00843, JHEP 08 (2018) 130

Search for pair-produced **three-jet** resonances in proton-proton collisions at **I3 TeV**, arxiv1810.10092, PRD 99 (2019) 012010

Scouting is well established strategy in CMS. Being used <u>consistently</u> in new physics searches since 2011

A drawback of Scouting & the idea of Parking

- Full event information not available in scouting
 - Difficult to fully characterize a potential signal (if seen)
- Way out: Parking of the full RAW data
 - NO offline reconstruction immediately
 - Reconstruct later (during technical stop / long shutdown) according to need

2016(Full), 2017 (partial) scouting data was parked

Data parking **not necessarily** only for scouting trigger. Eg. in 2018, CMS invested major effort and resource in B-physics parking.

unbiased

other side B

B parking in CMS

Motivation: Study B anomalies observed by other experiments. Can be useful for other searches also, eg. Long-lived exotic new particle searches.

Data sample: Collected large unbiased sample of B (~10¹⁰ events) **Strategy**: Triggered on muon from B (tag), to collect unbiased B on the other side (probe). Rates up to 5 kHz.

Summary

- Reach so-far-unexplored territory with the help of scouting & parking.
- Successful 'prompt' searches using scouting technique motivate more challenging attempts.
- Scouting and parking strategies for Run III under discussion. Possibility to expand to other final states.
- Investing efforts to optimally use the B parking dataset
- Leave no stone unturned. Do the best that can be done with CMS.

More searches to come.

Stay tuned !