The CMS Tracker Upgrade for the High Luminosity LHC

Simone Paoletti

Istituto Nazionale di Fisica Nucleare - sezione di Firenze

on behalf of the CMS Collaboration

EPS-HEP2019 - Ghent - 10-17 July 2019

The HL-LHC technological challenge

int. lumi 3000-4500 fb-1

inst. lumi: 5-7.5 x 1034 cm-2s-1

→ <PU> ~ 140-200

- dose & fluence: 10 x higher
- 750 kHz L1 rate
- 12.5 μs L1 latency

The present CMS tracker cannot sustain the implied radiation levels and data rates and has to be completely replaced

The CMS Tracker for HL-LHC

Key features:

- contribute to L1 trigger
- extended tracking coverage (up to η=4)
- high granularity and high bandwidth
 - up to 3.5GHz/cm² occupancy (first layer @ 3cm from beam line)

- Thin n-in-p silicon sensors
- Operation at -20 °C
- reduced material budget for improved tracking performance in high PU scenario

The Inner Tracker

Inner Tracker:

- 3900 modules, 4.9 m², 2×10⁹ pixels
- occupancy: < 0.1%
- Hybrid modules with 2 (1x2) or 4 (2x2) readout chips
- Coverage up to $l\eta l = 4.0$
- Simple mechanics:
 - can be removed for maintenance during LHC shutdowns
 - Barrel: splits in half at z~0
 - Disks: planar geometry (no turbines)

IT: Radiation hard pixel silicon sensors

Planar thin (100-150 μ m thick) **n-in-p** pixel sensors:

- up to 0.8-1kV bias @ end of lifetime
- spark protection between r/o chip and sensor

3D sensors option for innermost layers:

- + more radiation hard
- + lower bias needed
- larger cell capacitance
- more complex fabrication

Extensive R&D still ongoing:

More in Davide Zuolo's presentation
later in this session

IT: radiation hard readout chip

- Being developed by the RD53 Collaboration
 - both ATLAS and CMS inner detectors
- 65 nm CMOS technology
- $50x50 \mu m^2$ cell size
- low-threshold (≤ 1000 e⁻)
- high hit and trigger rate:
 - 160 Mbps control & up to 4 x1.28Gbps output links
- Support for serial powering scheme
- chip size(CMS): 16.8 x 21.6 mm² (336 x 432cells).

- RD53A: first prototype (~1/2 size of final chip)
- technology and design concepts demonstrated, lot of R&D performed:
 - Radiation hardness tested above 500 Mrad

CMS r/o chip prototype submission in 2020

IT: Link to DAQ and CTRL

Backend electronics (DTC)

DAQ and CTRL

- ~ 750 opto-boards ("portcards") integrated in the Service Cylinder implement advanced optical links communicating with the DAQ and Control backend systems
- AC-coupled e-links ensure the communication between the r/o chip and the portcards:
 - Up to 6 up-links @1.28 Gb/s per module
 - One down-link @160 Mb/s per module
- A High Density Interconnect flex-circuit provides decoupling capacitors and connectors to data e-links and power
- The r/o chip is the only active component in IT modules

The Outer Tracker

- 13200 "Pt modules" (providing L1 primitives):
 - Strip-Strip (2S)
 - macroPixel-Strip (PS)
- L1 Coverage up to lηl ~ 2.5
- 192 m², 42M strips, 170M macro-pixels
- occupancy < 1%
- Innovative tilted geometry in the inner barrel
 - reduces #PS modules → (mass and cost)
 - better trigger performance

Tracking @ L1 trigger

 P_t resolution, e- γ discrimination, isolation \rightarrow better trig selectivity needed to exploit high luminosity:

- An FPGA-based "track-finder" system performs pattern recognition + track fitting
- The track finder processes "stubs" relative to tracks with P_t > 2GeV sent by the Outer Tracker

More about the HL-LHC CMS L1 trigger in the talk by Cecile Sarah Caillol tomorrow morning

Tracking @ L1 trigger

 P_t resolution, e- γ discrimination, isolation \rightarrow better trig selectivity needed to exploit high luminosity:

- An FPGA-based "track-finder" system performs pattern recognition + track fitting
- The track finder processes "stubs" relative to tracks with P_t > 2GeV sent by the Outer Tracker

Pt discriminating module concept:

- two silicon sensors with small spacing in a module
- one ASIC correlates data from both sensors selecting tracker "stubs"

distance depends on layer radius:

More about the HL-LHC CMS L1

trigger in the talk by Cecile Sarah

Caillol tomorrow morning

→ keep selectivity p_t >2GeV/c

Tracking @ L1 trigger

 P_t resolution, e- γ discrimination, isolation \rightarrow better trig selectivity needed to exploit high luminosity:

- An FPGA-based "track-finder" system performs pattern recognition + track fitting
- The track finder processes "stubs" relative to tracks with P_t > 2GeV sent by the **Outer Tracker**

high transverse / pass

Pt discriminating module concept:

- two silicon sensors with small spacing in a module
- one ASIC correlates data from both sensors selecting tracker "stubs"

fail

More about the HL-LHC CMS L1

trigger in the talk by Cecile Sarah

Caillol tomorrow morning

on layer radius: → keep selectivity pt >2GeV/c

distance depends

"stubs" are sent to the track finder backend, and used to create L1 track primitives with pt>2GeV/c @ 40MHz

- @ 40 MHz Bunch crossing
- @ 750 kHz CMS Level-1 trigger

Strip-Strip (2S) modules:

90 cm² active area 2×1016 strips $5 \text{cm} \times 90 \text{ }\mu\text{m}$ (Power distribution, lpGBT, VTRX+)

IpGBT = low-power Gigabit Transceiver
VTRx+ = Versatile Link Plus Transceiver

CBC = CMS Binary Chip

→ readout and L1 stub finding

CIC = Concentrator Integrated Circuit Receives L1 information and readout data "Data hub" to service hybrid

Each module is a functional unit individually connected to:

- backend power system
- DTC (= Data, Trigger and Control) system via advanced optical links
- no token control rings
- no intermediate power grouping

IpGBT = low-power Gigabit Transceiver
VTRx+ = Versatile Link Plus Transceiver

CBC = CMS Binary Chip

→ readout and L1 stub finding

CIC = Concentrator Integrated Circuit Receives L1 information and readout data "Data hub" to service hybrid

Strip-Strip (2S) modules: 90 cm² active area

service hybrid
(Power distribution, lpGBT, VTRX+)

2 × 1016 strips 5cm × 90 μm
(coarse ² coordinate)

front-end hybrids:

1 Concentrator (CIC) ASIC

8 CBC readout ASICs

1.8 or 4.0

mm spacing

Macro Pixel-Strip (PS) modules:

45 cm² active area:

- 2 × 960 Strips 2.5 cm × 100 μm
- 32 ×960 macro-pixels 1.5 mm × 100 μm

SSA = Short Strip ASIC → readout of short strip sensors **MPA** = Macro Pixel ASIC → readout of Macro Pixel sensors

- Large area + high granularity → large number of channels
- thin sensors → low signal → low threshold and low noise analogue circuits
- high data bandwidth + long (12.5 μ s) L1 latency \rightarrow high digital activity

- Large area + high granularity → large number of channels
- thin sensors → low signal → low threshold and low noise analogue circuits
- high data bandwidth + long (12.5 μ s) L1 latency \rightarrow high digital activity

High Power Budget

more then 3 times the phase1 tracker

- ~ same available total cable cross section
- keeping low material budget
- delivered at ~ 1÷1.2 V

- Large area + high granularity → large number of channels
- thin sensors → low signal → low threshold and low noise analogue circuits
- high data bandwidth + long (12.5 μ s) L1 latency \rightarrow high digital activity

Different power distribution strategies:

- OT: 6-11 V parallel powering with on-module conversion (rad-hard DC/DC converters)
- IT: serial powering (up to 12 modules per chain)

- Large area + high granularity → large number of channels
- thin sensors → low signal → low threshold and low noise analogue circuits
- high data bandwidth + long (12.5 μ s) L1 latency \rightarrow high digital activity

Different power distribution strategies:

- OT: 6-11 V parallel powering with on-module conversion (rad-hard DC/DC converters)
- IT: serial powering (up to 12 modules per chain)

Powerful cooling system:- (4+1) x 50kW cooling plants

- based on two-phase CO₂ cooling system (-30 °C set point)
- small pipes → low material budget

Outer Tracker Power Distribution

- Each module receives one LV and one HV line
- LV is converted on-module by DC/DC converters (bPOL12V, bPOL2V5)
- 13200 modules operated independently
- Power chain defined:
 - high-granularity power system
 - 12-channel modularity
 - low material budget in tracking region
 - low total resistivity essential
 - thorough study of mechanics and integration details.

Up to 12 modules connected in one serial chain

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

Serial powering is supported by the r/o chip via the shunt-LDO IP block, providing:

- ⇒ shunt functionality: needed to implement the serial scheme
- → LDO regulation: ensure correct voltage (~1.2V) to the electronics

- the Shunt-LDO configuration defines ΔV=f(I)
- aiming at $\Delta V \sim 1.5 \text{ V} (1.2 \text{V} + 0.3 \text{V for LDO})$
- the chain has to provide enough power for transients: considered ~ 25% current headroom w.r.t. "typical" conditions

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

~ 500 serial chains power the full IT

- 4 A chains (2-chip modules)
- 8 A chains (4-chip modules)

Serial powering is supported by the r/o chip via the shunt-LDO IP block, providing:

- ⇒ shunt functionality: needed to implement the serial scheme
- → LDO regulation: ensure correct voltage (~1.2V) to the electronics

- the Shunt-LDO configuration defines ΔV=f(I)
- aiming at $\Delta V \sim 1.5 \text{ V} (1.2 \text{V} + 0.3 \text{V for LDO})$
- the chain has to provide enough power for transients: considered ~ 25% current headroom w.r.t. "typical" conditions

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

~ 500 serial chains power the full IT

- 4 A chains (2-chip modules)
- 8 A chains (4-chip modules)

Active R&D ongoing in ATLAS, CMS and RD53 with tests and simulations:

- Serial chain failure modes
- current sharing
- turn on procedure
- HV distribution in parallel to modules within the same serial chain
- Additional chip protection features under study

Up to 12 modules connected in one serial chain

Current is shared in parallel b/w r/o chips inside the same module

~ 500 serial chains power the full IT

- 4 A chains (2-chip modules)
- 8 A chains (4-chip modules)

Serial Powering concept established

Active R&D ongoing in ATLAS, CMS and RD53 with tests and simulations:

- Serial chain failure modes
- current sharing
- turn on procedure
- HV distribution in parallel to modules within the same serial chain
- Additional chip protection features under study

Serial chains with up to 16 RD53A chips were successfully operated in lab

Summary

- The upgraded CMS tracker is going to be a radiationhard highly segmented detector designed to operate in the harsh HL-LHC environment and to provide:
 - excellent tracking performance
 - extended η coverage and luminosity measurement
 - L1 trigger primitives @ 40MHz
- The performance is resting on top of innovative modular, lightweight design choices and new technologies:
 - new rad-hard ASICs and optical links
 - rad-hard thin silicon sensors
 - innovative powering schemes
 - CO₂ cooling
- Mechanical layout and integration studies are advanced
- Final ASICs prototype submissions expected by 2020
- First module prototypes in 2020
- Way paved towards the new tracker operating inside CMS in 2026

Reserve

The Inner Tracker

TEPX is a large and powerful luminometer:

- it receives 75 kHz extra lumi triggers (up to 10MHz full bandwidth when no data taking)
- lumi is measured via cluster counting, multihit stub counting, track counting, ...

First ring of the last disk is fully dedicated to background monitoring, with separate readout and control

CALORIMETERS

L1 (hardware) with tracks and rate ~750kHz Latency ≥ 10 µs HLT output up to 10 kHz

Replace DT FE electronics Complete RPC coverage in forward region (new GEM/RPC technology) Investigate Muon-tagging up to $\eta \sim 4$

40 MHz – Real time

750 kHz – CMS Level-1 trigger

~75 kHz – Lumi-specific trigger

P0 = 8.7W

Serial Power chains are current driven:

- the Shunt-LDO configuration defines $\Delta V=f(I)$
- aiming at $\Delta V \sim 1.5 \text{ V} (1.2 \text{V} + 0.3 \text{V for LDO})$
- the chain has to provide enough power for transients: considering ~ 25% current headroom w.r.t. "typical" conditions
 - → serial powering is intrinsically not efficient

SSA = Short Strip ASIC → readout of short strip sensors

MPA = Macro Pixel ASIC → readout of Macro Pixel sensors

Macro Pixel-Strip (PS) modules:

45 cm² active area:

- 2 × 960 Strips 2.5 cm × 100 μm
- 32 ×960 macro-pixels 1.5 mm × 100 μm

Tracking at L1 trigger level (5 μ s latency)

Pattern recognition:

- Tracklet approach:
 - stubs in adjacent layers → "Tracklets"
- Hough Transformation approach:
 - Select track candidate through Hough Transform

track fitting:

- Minimize chi2 (Kalman Filter)
- Remove duplicate

