

Muon performance with CMS detector in Run2 of LHC

Carlo Battilana^{1,2} on behalf of the CMS Collaboration

¹ Università di Bologna - ² Istituto Nazionale di Fisica Nucleare, sezione di Bologna

EPS-HEP2019: European Physical Society Conference on High Energy Physics, 10-17 July 2019, Ghent (Belgium)

Offline muon reconstruction and identification with CMS:

Muon reconstruction overview [1]:

- ▶ local muon reconstruction: segments from DT/CSC chambers, hit clusters for RPC
- > standalone muon tracks: built in the muon system out of segments/clusters
- tracker tracks: built out of inner tracker hits
- global muons: combine standalone tracks with tracker tracks (refit performed)
- tracker muons: propagate tracker-tracks to muon system, match with segments

Reconstructed muons are **fed into the CMS particle flow** (PF) [2].

Identification and isolation variables also computed

used to define selection criteria applied at analysis level

Muons in the CMS trigger:

CMS trigger staged in 2 levels:

- ▶ L1 trigger (L1T):
 - dedicated hardware
 - coarse data from muon system/calorimeters
 - rate: from 40MHz to < 100 kHz

High-Level Trigger (HLT):

- software based
- uses full detector information/granularity
- rate: down to ~ 1 kHz

L1T muon:

- ▶ trigger segments (TP) built within CSC/DT, hit clustering performed for RPC
- ▶ TPs/clusters get combined at chamber level (e.g. in TwinMux) or within Track Finders
- three Track Finders (TF) build tracks in different $|\eta|$ regions, estimate candidate p_T
- information from different TFs combined by Global Muon Trigger

Muon HLT:

- starts using L1T muon candidates as seeds
- ▶ local and standalone muon reconstructions (L2) similar to offline counterpart
- runs dedicated inner tracker reconstruction
- produces both tracker and global (L3) muon tracks
- ▶ for certain triggers, computes detector-based isolation

L1T and HLT significantly evolved along Run2, present description refers to 2018 "general purpose" triggers.

Muon trigger performance:

General purpose muon triggers used in 2018 (and rates @ 2·10³⁴ cm⁻¹s⁻¹):

- \rightarrow single isolated muon trigger: p_T > 24 GeV (~250 Hz)
- \blacktriangleright single non isolated muon trigger: p_T > 50 GeV (~49 Hz)
- ▶ double (isolated) muon trigger: $p_T > 17/8$ GeV (~30 Hz)

Single isolated muon trigger efficiency computed using a Tag-and-Probe method exploiting events with dimuons from Z decays collected by a single muon trigger [3]:

- overall plateau efficiency ~90% (L1T efficiency: ~94%)
- $\rightarrow \eta$ dependence mostly driven by L1T
- mild pile-up dependence (mostly driven by isolation)

Offline identification and isolation:

Efficiency of muon identification (ID) and isolation criteria measured with a Tag-and-Probe **method** [4] using events with dimuons from J/ψ or Z decays collected with triggers requiring the presence of, at least, a single muon.

Same method used in data and Monte Carlo (e.g. exploit simulated DY events). Scale factors are computed and used as corrections in analyses.

Summary of ID and isolation efficiency performance:

- ▶ efficiency to reconstruct and identify loose (PF) muons is ~100%
- ▶ tight ID criteria: ~97% efficient in data, with a scale factor ~ 98%
- ▶ tight PF isolation criteria: ~96% efficient, simulation models well the data

Scale and resolution:

Accurate calibration of muon scale and resolution, valid up to a p_T of ~ 200 GeV computed using dimuons from J/ ψ and Z decays.

Use <1/p_T> of muons from Z and peak of invariant mass distributions around resonances (J/ψ) and Z) to derive additive (tracker misalignment) and multiplicative (energy-loss / B field modelling) corrections to the muon curvature, computed in bins of muon charge, η and φ .

The resolution dependence over η and p_T is parametrised and smearing factors are computed out of the width of invariant mass distributions. They are applied in simulation to match the data.

High-energy muons:

For muons of few hundreds GeV combining information from inner tracker and muon system significantly improves the p_T measurement. A set of combined fits is run in reconstruction and the "best" fit is selected by algorithms comparing all of them.

The q/p_T resolution at high momentum is measured using cosmic muons traversing CMS from top to bottom close to the beam line. The relative q/p_T difference is measured comparing the p_T of the muon legs reconstructed in the top and bottom halves of CMS.

Biases in the momentum scale at high p_T are measured comparing the distributions of the muon curvature, for opposite-sign dimuons, in data and simulation. Artificial curvature biases are added, in steps, to simulation and a χ^2 is computed to compare results for each "bias step" with data. The curvature bias in data is the one minimising such χ^2 .

References:

- [1] Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV, JINST 13 (2018) P06015.
- [2] Particle-flow reconstruction and global event description with the CMS detector, <u>JINST 12 (2017) P10003</u>.
- [3] Muon HLT Performance with 2018 Data, CMS DP-2018/034. [4] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO

