The CMS MIP Timing Detector

drivenira junctum secans Juvenire punctum secons

Adi Bornheim

Caltech

On behalf of the CMS Collaboration EPS-HEP July 11, 2019

CMS Experiment at the LHC, CERN Data recorded: 2018-Apr-17 11:26:32.973824 GMT Run / Event / LS: 314475 / 10482774 / 11

Challenges at HL-LHC

Number of collisions per bunch crossing (pile-up):

- Phase I LHC: ~40 collisions
- High Luminosity LHC: 140-200 collisions

CMS event display

NOT THE OF THE HOUSE

PU Mitigation with MIP Timing

- Time tagging tracks with a resolution of 30-50 ps
 - 4D vertex reconstruction
 - Requirement of time compatibility for track-vertex association
 - CMS calorimeters will have precision timing capabilities too
- Reduce effective pile-up to the level of current CMS detector
 - Slicing beam spot (time spread ~180 ps) in consecutive time slides (exposures)

Enhancing Particle Reconstruction

- Reduction of pile-up enhances quality of CMS particle reconstruction at HL-LHC.
 - Increased b-tagging efficiency
 - Increase of photon and lepton identification, efficiency and isolation
 - Improved missing transverse momentum resolution
 - Reduction of fake jet reconstruction from pile-up.
- 10%-20% gain in s/sqrt(B) for many Higgs decay channels.

Adi Bornheim, Precision Timing with the CMS MIP Timing Detector

Enabling new Physics Studies

- Enabling measurements of velocity for low p_T hadrons :
 - Particle ID : π/K up to 2 GeV, p/K up to 5 GeV
 - New reach for Heavy ion physics at CMS
- 4D vertex reconstruction of primary and secondary vertices :
 - Provides a closed kinematic for Long Lived Particles

Design of the CMS MIP Timing Layer

Barrel

Surface~36 m²Number of channels~331kRadiation level~2x1014 neq/cm²Sensors : LYSO crystals / SiPM

ENDCAPS

Surface ~ 15 m² Number of channels ~ 4000k Radiation level ~ 2x10¹⁵ n_{eq}/cm² **Sensors**: Low gain avalanche diodes

- Thin layer between tracker and calorimeters
- MIP sensitivity with time resolution of 30-50 ps
- Hermetic coverage for |η|<2.9

MTB Barrel Sensor

- Use industry standard technology
 - Cost effective coverage of BTL area
- LYSO crystals as scintillator
 - Excellent radiation tolerance
 - Dense (7.1 g/cm³), bright (40k ph/MeV)
 - Fast rise time O(100ps), decay time ~40 ns
- Silicon Photomultipliers as photo-sensors
 - Compact, insensitive to magnetic fields, fast
 - Optimal SiPM cell size : 15 mµ
 - High dynamic range, rad tolerant
 - Photo Detection efficiency : 20-40%
- High aspect ratio geometry :
 - Enhance light collection efficiency
 - Minimize SiPM area / Crystal area
 - Reduce power consumption
 - Better timing performance

MTD Barrel Sensor performance

- 30 ps and below achieved in test beam measurements.
- Uniform time response and resolution across sensor area
- Combination of two SiPMs per LYSO crystal improves resolution

Adi Bornheim, Precision Timing with the CMS MIP Timing Detector

MTD Barrel Performance

- Detector timing performance evolution during operation
 - Photo statistics and noise term dominate
 - Clock distribution, electronics and digitization negligible
- Radiation damage will increase SiPM dark count rate (DCR) up to 60 GHz.
- DCR noise mitigation by :
 - CO₂-cooling to -30 °C
 - Annealing of SiPMs at 15 °C during shutdowns
 - Optimizing SiPM operating point
 - Dedicated noise cancelation circuit in the Front End ASIC

MTD Barrel Detector Layout

2 trays in eta

- Detector mounted on the inner surface of the Tracker Support Tube.
- Common cold volume & services
- Single layer, 40 mm thick, segmented into 72 trays
- Each tray consists of 6 Readout Units with 24 modules each

ent CMS Tackr Support

Sensor module : 16 LYSO bars, 2 SiPM arrays, ~52x57 mm

11.07.2019

Adi Bornheim, Precision Timing

MTD Endcap Sensor

- Low Gain Avalanche Diodes :
 - Optimized for precision timing
 - Highly doped p⁺ region just below the ntype implants
 - Moderate internal gain of 10 to 30
 - Radiation tolerance sufficient for endcap fluence
- Sensor optimization
 - Thin detectors to maximize slew rate (dV/dt) : ~50 μm
 - Small pixel size to minimize capacitance : 1.3 x 1.3 mm²
 - Small sensors (21x42 mm²) filled with pixels for optimal wafer usage
 - Maximize efficiency (85→92%) by reducing space between pixels

MTD Endcap Test Beam Results

mm

- Sensor performance close to final specs :
 - Pixel efficiency close to 100%
 - Array fill factor 90%
 - Sensor uniformity 2%
 - Target time resolution of 30 ps per pixel
 - Noise jitter term <25 ps for gain > 15
 - Intrinsic limit from Landau fluctuation
 - Spatial non-uniformity of energy deposition
 - Constant term : ~25 ps
 - Robust double layer design

MTD Endcap Performance

- Sensors irradiated up to fluence expected in CMS
- Time resolution maintained at < 40 ps after 1.5×10¹⁵ n_{eq}/cm²
 - Increase of bias voltage to compensate gain loss
 - Cooling to -30 °C to minimize leakage current
- R&D targeting further improved radiation tolerance

MTD Endcap Detector Layout

- Double mounted on the endcap calorimeter.
- Sensor modules on two sides of support disk.
- Detector thickness ~40 mm
- Services run across modules in service channels to periphery.
- Separate cold volume.

CMS MTD for HL-LHC

- Mitigate harsh pile-up conditions at HL-LHC with precision timing
 - Enhance CMS particle reconstruction by reducing effective pile-up
- High impact on the HL-LHC physics program
 - Enable TOF for particle ID
 - Enable 4D reconstruction
 - Enables LLP signatures
 - Enhance statistical significance of Higgs analysis
- CMS HL-LHC upgrade includes a MIP Timing detector :
 - Hermetic device to time tag tracks with 30-50 ps resolution
 - LYSO crystals with SiPM readout in the barrel
 - LGAD in the endcaps

