The CMS MIP Timing Detector

Adi Bornheim
Caltech
On behalf of the CMS Collaboration
EPS-HEP
July 11, 2019
Challenges at HL-LHC

Number of collisions per bunch crossing (pile-up):
- Phase I LHC: ~40 collisions
- High Luminosity LHC: 140-200 collisions
PU Mitigation with MIP Timing

- Time tagging tracks with a resolution of 30-50 ps
 - 4D vertex reconstruction
 - Requirement of time compatibility for track-vertex association
 - CMS calorimeters will have precision timing capabilities too
- Reduce effective pile-up to the level of current CMS detector
 - Slicing beam spot (time spread ~180 ps) in consecutive time slides (exposures)
Enhancing Particle Reconstruction

- Reduction of pile-up enhances quality of CMS particle reconstruction at HL-LHC.
 - Increased b-tagging efficiency
 - Increase of photon and lepton identification, efficiency and isolation
 - Improved missing transverse momentum resolution
 - Reduction of fake jet reconstruction from pile-up.
- 10%-20% gain in s/sqrt(B) for many Higgs decay channels.
Enabling new Physics Studies

- Enabling measurements of velocity for low p_T hadrons:
 - Particle ID: π/K up to 2 GeV, p/K up to 5 GeV
 - New reach for Heavy ion physics at CMS
- 4D vertex reconstruction of primary and secondary vertices:
 - Provides a closed kinematic for Long Lived Particles
Design of the CMS MIP Timing Layer

- Thin layer between tracker and calorimeters
- MIP sensitivity with time resolution of 30-50 ps
- Hermetic coverage for $|\eta|<2.9$

Barrel
- Surface: $\sim 36\ m^2$
- Number of channels: $\sim 331k$
- Radiation level: $\sim 2\times10^{14}\ n_{eq}/cm^2$
- Sensors: LYSO crystals / SiPM

ENDCAPS
- Surface: $\sim 15\ m^2$
- Number of channels: $\sim 4000k$
- Radiation level: $\sim 2\times10^{15}\ n_{eq}/cm^2$
- Sensors: Low gain avalanche diodes
MTB Barrel Sensor

- Use industry standard technology
 - Cost effective coverage of BTL area

- LYSO crystals as scintillator
 - Excellent radiation tolerance
 - Dense (7.1 g/cm³), bright (40k ph/MeV)
 - Fast rise time O(100ps), decay time ~40 ns

- Silicon Photomultipliers as photo-sensors
 - Compact, insensitive to magnetic fields, fast
 - Optimal SiPM cell size : 15 µm
 - High dynamic range, rad tolerant
 - Photo Detection efficiency : 20-40%

- High aspect ratio geometry :
 - Enhance light collection efficiency
 - Minimize SiPM area / Crystal area
 - Reduce power consumption
 - Better timing performance
MTD Barrel Sensor performance

- 30 ps and below achieved in test beam measurements.
- Uniform time response and resolution across sensor area
- Combination of two SiPMs per LYSO crystal improves resolution
MTD Barrel Performance

- Detector timing performance evolution during operation
 - Photo statistics and noise term dominate
 - Clock distribution, electronics and digitization negligible

- Radiation damage will increase SiPM dark count rate (DCR) up to 60 GHz.

- DCR noise mitigation by:
 - CO$_2$-cooling to -30 °C
 - Annealing of SiPMs at 15 °C during shutdowns
 - Optimizing SiPM operating point
 - Dedicated noise cancelation circuit in the Front End ASIC
MTD Barrel Detector Layout

- Detector mounted on the inner surface of the Tracker Support Tube.
- Common cold volume & services
- Single layer, 40 mm thick, segmented into 72 trays
- Each tray consists of 6 Readout Units with 24 modules each

Sensor module: 16 LYSO bars, 2 SiPM arrays, ~52x57 mm

Current CMS Tracker Support Tube
MTD Endcap Sensor

- Low Gain Avalanche Diodes:
 - Optimized for precision timing
 - Highly doped p^+ region just below the n-type implants
 - Moderate internal gain of 10 to 30
 - Radiation tolerance sufficient for endcap fluence

- Sensor optimization
 - Thin detectors to maximize slew rate $(dV/dt) : \sim 50 \ \mu m$
 - Small pixel size to minimize capacitance: $1.3 \times 1.3 \ mm^2$
 - Small sensors $(21x42 \ mm^2)$ filled with pixels for optimal wafer usage
 - Maximize efficiency $(85 \rightarrow 92\%)$ by reducing space between pixels
MTD Endcap Test Beam Results

- Sensor performance close to final specs:
 - Pixel efficiency close to 100%
 - Array fill factor 90%
 - Sensor uniformity 2%

- Target time resolution of 30 ps per pixel
 - Noise jitter term <25 ps for gain > 15
 - Intrinsic limit from Landau fluctuation
 - Spatial non-uniformity of energy deposition
 - Constant term: ~25 ps
 - Robust double layer design
MTD Endcap Performance

- Sensors irradiated up to fluence expected in CMS
- Time resolution maintained at < 40 ps after $1.5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$
 - Increase of bias voltage to compensate gain loss
 - Cooling to -30 °C to minimize leakage current
- R&D targeting further improved radiation tolerance
MTD Endcap Detector Layout

- Double mounted on the endcap calorimeter.
- Sensor modules on two sides of support disk.
- Detector thickness ~40 mm
- Services run across modules in service channels to periphery.
- Separate cold volume.
CMS MTD for HL-LHC

- Mitigate harsh pile-up conditions at HL-LHC with precision timing
 - Enhance CMS particle reconstruction by reducing effective pile-up

- High impact on the HL-LHC physics program
 - Enable TOF for particle ID
 - Enable 4D reconstruction
 - Enables LLP signatures
 - Enhance statistical significance of Higgs analysis

- CMS HL-LHC upgrade includes a MIP Timing detector:
 - Hermetic device to time tag tracks with 30-50 ps resolution
 - LYSO crystals with SiPM readout in the barrel
 - LGAD in the endcaps