ATLAS Level-1 Endcap Muon Trigger for Run 3

Tomoe Kishimoto, on behalf of the ATLAS collaboration

ICEPP, The University of Tokyo

Jul. 12 2019

T.Kishimoto (ICEPP)

EPS-HEP 2019

Jul. 12 2019

1

 \checkmark \bigcirc \bigcirc \bigcirc

Introduction and Run 2 status

✓ Overview of the ATLAS L1 endcap muon trigger:

✓ Run 2 performances:

- Primary single muon trigger with a 20 GeV p_T threshold (L1_MU20).
 - $\sim 17 kHz@L=2x10^{34}cm^{-2}s^{-1}$ (2018 data)
- ~90% plateau trigger efficiencies with a stable operation.

- Hardware trigger by Thin Gap Chambers (TGC) for $1.05 < |\eta| < 2.4$.
 - New coincidences using TGC inner stations (TGC-EIFI) and Tile calorimeter were introduced in Run2.
- Muon p_T measurement using predefined Look Up Tables (LUT).

T.Kishimoto (ICEPP)

 $\langle \bigcirc$

Upgrade motivation for Run 3

- Main motivation of upgrade program for Run 3:
 - Reject "fake" triggers, ~50% of the trigger candidates is fake due to slow particles emanating from the endcap toroid or shielding.
 - Reduce low-p_T muon contamination below the threshold.
 - → Improvements of the L1 muon trigger are important for various physics analyses. (the total budget of L1 rate is 100 kHz)
- This presentation focuses on:
 - Development of the new trigger processor board (Sector Logic) and its trigger algorithms.
 - Trigger rate estimation.

lul. 12 2019

 $\mathcal{A} \subset \mathcal{A}$

Upgrade overview for Run 3

- New muon detectors will be installed into the inner regions:
 - Small Wheel (TGC, MDT, CSC) will be replaced with New Small Wheel (sTGC, MM)
 - sTGC: small-strip TGC detector, MM: Micromegas detector
 - → better coverage for the TGC–BW and Small Wheel coincidence $(|\eta| < 2.0 \rightarrow |\eta| < 2.4)$
 - \rightarrow precision measurement of muon track segments
 - New RPC detectors (RPC-BIS78) will be added to the edge of the barrel muon trigger system

New coincidences between TGC-BW and NSW/RPC-BIS78 will be introduced to reject the fake triggers and improve the p_T resolution.

→ New electronics have been developed to handle the new information and make coincidences.

< □ ▶ < □ ▶

E.

 $\checkmark Q (\sim$

4

- ₹ ►

L1 endcap muon trigger schema for Run 3

New Sector Logic board design

Idea of BW and NSW coincidence

- There are several baseline ideas for TGC-BW and NSW coincidence.
 - Use the position and angle correlations between TGC-BW and NSW.
 - (η_{BW}, Φ_{BW}) and (η_{NSW}, Φ_{NSW})
 - $\Delta \theta$ and ($\eta_{BW} \eta_{NSW}$)
 - LUT is defined based on hit and angle patterns of simulations.

p_T resolution will improve thanks to the fine NSW granularity.

Position resolution: $\eta_{NSW}=0.005, \Phi_{NSW}=0.01$ Angle resolution: $\Delta \theta = 0.001$ rad are assumed in this study

T.Kishimoto (ICEPP)

EPS-HEP 2019

Jul. 12 2019

E

 $\checkmark Q \bigcirc$

7

< ∃ →

Performance of BW and NSW coincidence

- \checkmark Low p_T candidates are rejected effectively by the coincidence.
 - Only a few percent efficiency loss is expected because of the NSW track reconstruction efficiency.
 - For L1_MU20, 50% reduction at 10 GeV and 85% reduction at 5GeV.

Muon charge identification at L1 trigger

L1 muon endcap trigger has a capability of identifying muon charges.

- Several applications in the L1 trigger benefit by the charge information.
 - E.g. Topological triggers for low p_T muons, such as di-muons with opposite charges for Y(nS) decays.
 - Crucial use case for the flavor physics.
- Dedicated LUTs can be implemented thanks to new FPGA resources.
- Accuracy of the muon charge identification at the L1 muon endcap trigger is estimated using simulations.
 - The accuracy is very high for low p_T muons, >98% accuracy up to p_T=30GeV (The charge information is not important for high p_T single muon triggers)

Trigger rate estimation

- Expected reductions of the trigger rate by introducing the new coincidences are estimated using Run 2 real data.
 - MDT track segments in the current system are used as NSW and RPC-BIS78 tracks.
 - >90% of fake triggers are rejected by the new coincidences !!
 - Low p_T candidates are reduced thanks to the fine granularity of NSW.

 \rightarrow ~45% rate reduction is expected for the L1_MU20 trigger.

 $\langle \Box \rangle$

Jul. 12 2019

10

 $\mathcal{A} \cap \mathcal{A}$

Summary

- ✓ The upgrade of the ATLAS L1 endcap muon trigger is required to cope with the high event rate in Run 3.
 - New muon detectors (NSW and RPC-BIS78) will be installed to improve the detector coverage and resolutions.
 - \rightarrow New electronics need to be developed to handle the data.
- The new Sector Logic boards have been produced.
 - Installation completed, and commissioning is underway.
 - Baseline ideas of trigger algorithms, such as TGC-BW and NSW coincidence, are tested using simulations, and show good performances.
 - e.g: >90% of fake triggers will be rejected by the TGC-BW and NSW coincidence.
- ✓ L1_MU20 trigger rate for Run 3 is estimated using real data.
 - ~45% rate reduction is expected compared to Run 2.

< □ ▶ < ⊡ ▶

Jul. 12 2019

 $\checkmark Q \bigcirc$

11

Backup

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● りゃぐ

12

New readout system for trigger data

- ✓ The readout system for trigger data is re-designed.
 - Custom electronics \rightarrow commercial PCs and network switches.
 - Software-based data acquisition system (SROD).

Trigger rate and physics impact

 \bullet

▲白

Э

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

14

∍→

Coverage of inner detectors

Map of covered region by each detector

T.Kishimoto (ICEPP)

EPS-HEP 2019

- - 4 🗗 ▶ - - 4

▲ 글 ▶

- E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$