Right-Handed neutrino searches at FCC-(ee)

Clement Helsens, CERN-EP
EPS 2019, Genf
On behalf of the FCC-ee physics group
Thanks to Alain Blondel and Oliver Fisher for the input material
The FCC

- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the Geneva area

- Ultimate goal: ≥100 TeV pp-collider (FCC-hh)

 - defining infrastructure requirements

 - Few possible first steps:
 - e^+e^- collider (FCC-ee)
 High Lumi, $E_{CM} = 90-500$ GeV
 - HE-LHC 16T ⇒ 27 TeV in LEP/LHC tunnel
 - Low energy FCC <50TeV (after ESPPU)
 - Possible addition:
 - p-e (FCC-he) option
 - This is the center of discussions for the European Strategy Update

The way by FCC-ee is the fastest and cheapest way to 100 TeV, also produces the most physics. Preferred scenario presented in the CDR. https://cerncourier.com/cern-thinks-bigger/

It’s also a good start for a μμC!
Z peak $E_{cm} : 91 \text{ GeV}$

WW threshold $E_{cm} : 161 \text{ GeV}$

ZH threshold $E_{cm} : 240 \text{ GeV}$

$t\bar{t}$ threshold $E_{cm} : 350 \text{ GeV}$

$Z (91.2 \text{ GeV}) : 4.6 \times 10^{36} \text{ cm}^2\text{s}^{-1}$

$W^+W^- (161 \text{ GeV}) : 5.6 \times 10^{35} \text{ cm}^2\text{s}^{-1}$

$Z (240 \text{ GeV}) : 1.7 \times 10^{35} \text{ cm}^2\text{s}^{-1}$

$t\bar{t} (350 \text{ GeV}) : 3.8 \times 10^{34} \text{ cm}^2\text{s}^{-1}$

$H (250 \text{ GeV}) : 1.5 \times 10^{34} \text{ cm}^2\text{s}^{-1}$

$\sqrt{s} [\text{GeV}]$
FCC-ee running scenario

From FCC CDR Volume 2

Table 2.1: Run plan for FCC-ee in its baseline configuration with two experiments. The number of WW events is given for the entirety of the FCC-ee running at and above the WW threshold.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Run duration (years)</th>
<th>Center-of-mass Energies (GeV)</th>
<th>Integrated Luminosity (ab$^{-1}$)</th>
<th>Event Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC-ee-Z</td>
<td>4</td>
<td>88-95</td>
<td>150</td>
<td>3×10^{12} visible Z decays</td>
</tr>
<tr>
<td>FCC-ee-W</td>
<td>2</td>
<td>158-162</td>
<td>12</td>
<td>10^8 WW events</td>
</tr>
<tr>
<td>FCC-ee-H</td>
<td>3</td>
<td>240</td>
<td>5</td>
<td>10^6 ZH events</td>
</tr>
<tr>
<td>FCC-ee-tt</td>
<td>5</td>
<td>345-365</td>
<td>1.5</td>
<td>10^6 t\bar{t} events</td>
</tr>
</tbody>
</table>
FCC-ee discovery potential

Today we do not know how nature will surprise us. A few things that FCC-ee could do

- **Explore**
 - ~20-50 (stat 400…) fold improved precision on many EW quantities
 - x 5-7 in mass m_Z, m_W, m_{top}, $\sin^2\theta_W^{\text{eff}}$, R_b, $\alpha_{\text{QED}}(m_Z)$, $\alpha_s(m_Z,m_W,m_t)$, top quark couplings
 - Model-independent Higgs width and couplings measurements at percent-permil level
 - 10-100 TeV energy scale (and beyond) with Precision Measurements (through EFT)
 - ~3σ of effect of Higgs self-coupling from Vertex corrections (also maybe directly with FCC-ee 500GeV)
 - Only machine with possible investigation of ν coupling at $\sqrt{s} = m_H$

- **Discover**
 - Violation of flavour conservation or universality and unitarity of PMNS @10^{-5}
 - FCNC ($Z \rightarrow \mu\tau$, $e\tau$) in 5×10^{12} Z decays and τ BR in 2×10^{11} $Z \rightarrow \tau\tau$ (also FCNC in top decays with 10^6 tops)
 - Flavour physics with 10^{12} $b\bar{b}$ events ($B \rightarrow s\tau\tau$ etc..)
 - Dark matter as «invisible decay» of H or Z (or in LHC loopholes)

- **Direct Discovery**
 - Very weakly coupled particle in 5-100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons etc...

- Not only a «Higgs Factory», «Z factory» and «top» are important for ‘discovery potential’ (also QCD)
Electroweak eigenstates

<table>
<thead>
<tr>
<th>(\begin{pmatrix} e \ v_e \end{pmatrix}L \ \begin{pmatrix} \mu \ v\mu \end{pmatrix}L \ \begin{pmatrix} \tau \ v\tau \end{pmatrix}_L)</th>
<th>(\begin{pmatrix} e_R \ v_e_R \end{pmatrix} \ \begin{pmatrix} \mu_R \ v_\mu_R \end{pmatrix} \ \begin{pmatrix} \tau_R \ v_\tau_R \end{pmatrix})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l=1/2)</td>
<td>(l=0)</td>
</tr>
</tbody>
</table>

- We measure neutrino parameters, but:
 - No right-handed neutrinos in the SM
 - No mass matrix, no mixing of the neutrino flavour states

⇒ Neutrino oscillations are evidence for physics beyond the SM.

- Right handed neutrinos are singlets,
 - No weak interaction
 - No EM interaction
 - No strong interaction

- Can’t produce them, Can’t detect them
 - So why bother? (also called Sterile)
The Seesaw mechanism with RH neutrinos

• Economic extension by adding a number of Fermionic singlets
 • “Right-handed” or “sterile” neutrinos

• Two mass-differences
 • At least two sterile neutrinos
 • New mass scale, a priori unrelated to the known ones

• Many constraints from experiments on all energy scales

• May be connected to e.g. Dark Matter and Baryogenesis
The Big Picture

Neutrino Yukawa coupling $y_
u$

Y_{top} Y_e

10^{-3} 10^{-7} 10^{-9} 10^{-11}

eV keV GeV PeV ZeV M_{GUT} M_{Pl}

Sterile neutrino mass scale

$m^2 = \Delta m^2_{\text{atm}}$

$m^2 = \Delta m^2_{\text{sol}}$

Λ_{EW}

GUT

reactor & LSND anomaly

Right-Handed neutrino at FCC
Searches at FCC

Production

\[W_a: \]

\[X \rightarrow W \theta_a N \]

\[Z_b: \]

\[X \rightarrow Z \theta_c, \theta_\mu, \theta_\tau N \]

\[h_1: \]

\[X \rightarrow h \theta_c, \theta_\mu, \theta_\tau N \]

Decay

\[\ell_\beta \bar{\nu} \]

\[\theta_\beta \]

\[W^\mp \]

Final States

\[pp: \ell_\alpha \ell_\beta \bar{\nu} jj, \ell_\alpha \ell_\beta \ell_\gamma \bar{\nu} \]

\[e^+ e^-, e^- p: Y \ell_\beta \ell_\gamma jj, Y \ell_\beta \ell_\gamma \bar{\nu} \]

\[e^- e^+, pp: \nu \ell_\beta \ell_\gamma jj, \nu \ell_\beta \ell_\gamma \bar{\nu} \]

\[pp: \ell_\alpha \nu jj, \ell_\alpha \ell_\beta \ell_\gamma \bar{\nu}, \ell_\alpha \nu \bar{\nu} \]

\[e^- e^+, pp: \nu \ell_\beta \ell_\gamma jj, \nu \ell_\beta \ell_\gamma \bar{\nu} \]

\[e^- e^+, pp: \nu \ell_\beta \ell_\gamma jj, \nu \ell_\beta \ell_\gamma \bar{\nu} \]

\[pp: \ell_\alpha \nu jj, \ell_\alpha \nu \ell_\beta \ell_\gamma \bar{\nu}, \ell_\alpha \nu VV \]

\[e^- e^+, pp: \nu \ell_\beta \ell_\gamma jj, \nu \ell_\beta \ell_\gamma \bar{\nu} \]

\[e^- e^+, pp: \nu \ell_\beta \ell_\gamma jj, \nu \ell_\beta \ell_\gamma \bar{\nu} \]

Displaced vertex searches at FCC-ee

- Test minimal type I seesaw hypothesis
- Together with ΔM also tests the compatibility with leptogenesis
- Long life time \rightarrow detached vertex for $\sim < M_Z$
- Backgrounds: four fermions
 - $e^+e^- \rightarrow W^*W^*$, $e^+e^- \rightarrow Z^*(\text{nunu})(Z/\gamma)^*$

Parameter points consistent with baryogenesis

arXiv:1411.5230

Antusch et al. JHEP 1809 (2018) 124
Indirect searches in Higgs properties

• Additional mono-Higgs production mechanism

• New Higgs decay channels:
 • Modification of Higgs branching ratios
 • New exotic decay channels: \(h \to \nu N, N \to \text{SM} \)
 • New invisible decay channels

• \(N \) contribution to the triple Higgs coupling
Outlook for FCC-hh

• Z factory like FCC-ee offers a clean method for detection of Heavy Right-Handed neutrinos

• W bosons are less abundant at the lepton colliders
 • At the 100 TeV FCC-hh W is the dominant particle: Expect 10^{13} real W’s
 • There is a lot of pile-up/backgrounds/lifetime/trigger issues which need to be investigated

• But.... in the regime of long lived HNLs the simultaneous presence of
 • the initial lepton from W decays
 • the detached vertex with kinematically constrained decay
 • -> Would allow for a significant background reduction

• Could also served as a characterization both in flavour and charge of the produced neutrino
 • information of the flavour sensitive mixing angles
 • test of the fermion violating nature of the intermediate (Majorana) particle
Overview of sensitivities

- At one-sigma confidence level
- ep and pp at parton level

Right-Handed neutrino at FCC

- Best sensitivity from displaced vertex searches at FCC-ee
- EWPO sensitivity up to very high mass scales
- Good sensitivity reach from FCC-hh and FCC-eh

S. Antusch et al.; Int. J. Mod. Phys. A 32 (2017)
Synergy and complementarity

• **FCC-ee**
 - Highest sensitivity in the low mass regime \((M<m_W)\)
 - test model predictions: seesaw, leptogenesis
 - SM precision tests have high sensitivity; mass independent
 - Test heavy neutrinos up to \(~60\text{TeV}\)
 - Not sensitive to the model details

• **FCC-hh and he**
 - Direct test of lepton-flavor and number violation
 - Number of heavy neutrino generations and their masses
 - Indirect test via measurement of Higgs potential
 - Sensitive to high mass regime
Conclusion

• The FCC design study is establishing the feasibility or the path to feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology.

• Both FCC-ee and FCC-hh have outstanding physics cases
 • each in their own right
 • the sequential implementation of FCC-ee, FCC-hh, would maximise the physics reach

• FCC has unique prospects of testing model predictions.

• Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the synergies and complementarities

• Neutrino mass physics should be a benchmark for future collider studies!
A 100km circular collider as next the step

![Diagram showing collider steps]

The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology.

Both FCC-ee and FCC-hh have outstanding physics cases.

We are preparing to move to the next step, as soon as possible (EPPSU)
Bonus
Right-Handed neutrino at FCC

With $5 \times 10^{12} Z$
Manifestation of Right-Handed neutrinos

One see saw family

\[\theta \approx \left(\frac{m_D}{M} \right) \]

\[m_\nu \approx \frac{m_D^2}{M} \]

\[m_N \approx M \]

\[|U|^2 \propto \theta^2 \approx \frac{m_\nu}{m_N} \]

- mixing with active neutrinos leads to various observable consequences
 - if very light (eV), possible effect on neutrino oscillations
 - if in keV region (dark matter), monochromatic photons from galaxies with E=mN/2
- possibly measurable effects at High Energy
 - If N is heavy it will decay in the detector (not invisible)
 - PMNS matrix unitarity violation and deficit in Z «invisible» width
 - Higgs, Z, W visible exotic decays H\(\rightarrow\) viNi and Z\(\rightarrow\) viNi, W\(\rightarrow\) li Ni
 - also in K, charm and b decays via W*\(\rightarrow\) li \(\pm\) N, N \(\rightarrow\) lj \(\pm\) with any of six sign and lepton flavour combination
 - violation of unitarity and lepton universality in Z, W or \(\tau\) decays
- Couplings are very small \(\left(\frac{m_\nu}{m_N} \right)\) (but *who knows?*) and generally seem out of reach at high energy colliders.

What is produced is W,Z decays is:

\[\nu_L = \nu \cos \theta + N \sin \theta \]

\(\nu = \text{light mass eigenstate}\)

\(N = \text{heavy mass eigentstate}\)

\(\neq \nu_L\) active neutrino which couples to weak inter

\(\neq N_R\) which does not
(indirect) Effect of RH ν on EW precision obs.

- The relationship $|U|^2 \propto \theta^2 \approx m_\nu / m_N$ is valid for one family see-saw
- For two or three families the mixing can be larger
- *Shaposhnikov, Antush and Fisher*, have shown that a slight # in Majorana mass can generate larger mixing between the left- and right-handed neutrinos
- $\langle v_l \rangle = v \cos \theta + N \sin \theta \rightarrow (\cos \theta)^2$ becomes parametrized as $1 + \epsilon_{\alpha \beta}$ ($\epsilon_{\alpha \alpha}$ is negative) the coupling to light ‘normal’ neutrinos is typically reduced.
- In the G_F, M_Z scheme, G_F (extracted from $\mu \rightarrow e\nu e\nu \mu$) and g should be increased.
- This leads to correlated variations of all predictions upon e or μ neutrino mixing.
- Only the ‘number of neutrinos’ (R_{inv}^{ν} and σ_{peak}^{ν}) and the tau specific CC observables (tau decays) are sensitive to the tau-neutrino mixing.

<table>
<thead>
<tr>
<th>Prediction in MUV</th>
<th>Prediction in the SM</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{inv}^{ν}</td>
<td>20.744(11)</td>
<td>20.767(25)</td>
</tr>
<tr>
<td>R_0</td>
<td>0.21577(4)</td>
<td>0.21629(66)</td>
</tr>
<tr>
<td>R_1</td>
<td>0.17266(6)</td>
<td>0.1721(30)</td>
</tr>
<tr>
<td>σ_{had}^{ν}</td>
<td>41.470(15) nb</td>
<td>41.541(37) nb</td>
</tr>
<tr>
<td>M_W^{ν}</td>
<td>5.9723(10)</td>
<td>5.942(16)</td>
</tr>
<tr>
<td>T^{ν}</td>
<td>80.359(11) GeV</td>
<td>80.385(15) GeV</td>
</tr>
<tr>
<td>ϵ_{had}^{ν}</td>
<td>83.966(12) MeV</td>
<td>83.983(86) MeV</td>
</tr>
<tr>
<td>ϵ_{lep}^{ν}</td>
<td>0.23150(1)</td>
<td>0.23113(21)</td>
</tr>
<tr>
<td>ϵ_{had}^{ν}</td>
<td>0.23150(1)</td>
<td>0.23222(27)</td>
</tr>
</tbody>
</table>