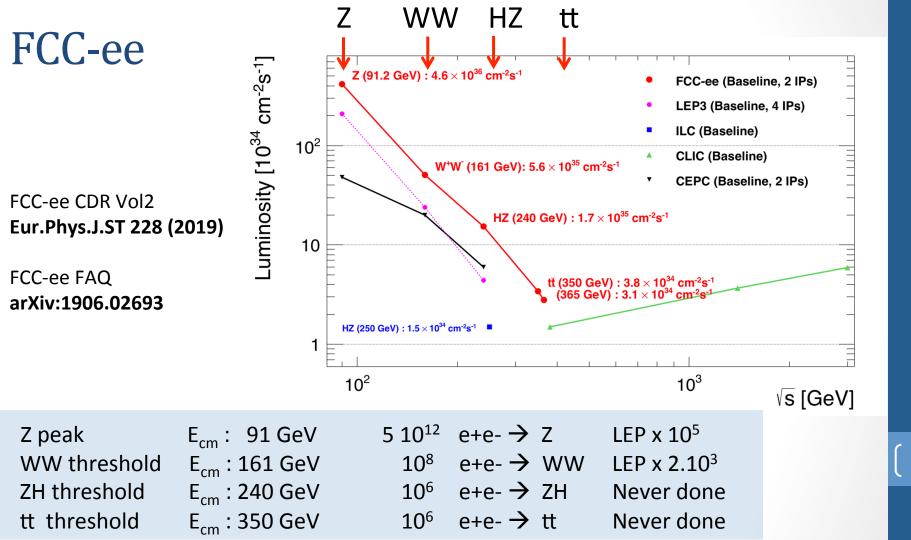

Right-Handed neutrino searches at FCC-(ee)

Clement Helsens, CERN-EP

EPS 2019, Genft On behalf of the FCC-ee physics group Thanks to Alain Blondel and Oliver Fisher for the input material 12/07/19


The FCC

- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the Geneva area
- Ultimate goal: ≥100 TeV pp-collider (FCC-hh)
- → defining infrastructure requirements
- \rightarrow Few possible first steps:
- e⁺e⁻ collider (FCC-ee) High Lumi, E_{CM} =90-500 GeV
- HE-LHC 16T \Rightarrow 27 TeV in LEP/LHC tunnel
- Low energy FCC <50TeV (after ESPPU)
- Possible addition:
 - p-e (FCC-he) option
- This is the center of discussions for the European Strategy Update

https://cerncourier.com/cern-thinks-bigger/

It's also a good start for a $\mu\mu$ C!

FCC-ee running scenario

From FCC CDR Volume 2

Table 2.1: Run plan for FCC-ee in its baseline configuration with two experiments. The number of WW events is given for the entirety of the FCC-ee running at and above the WW threshold.

Phase	Run duration	Center-of-mass	Integrated	Event
	(years)	Energies (GeV)	Luminosity (ab^{-1})	Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt	5	345-365	1.5	$10^6 \text{ t}\overline{\text{t}}$ events

FCC-ee discovery potential

Today we do not know how nature will surprise us. A few things that FCC-ee could do

• Explore

- ~20-50 (stat 400...) fold improved precision on many EW quantities
 - x 5-7 in mass $m_{z_r} m_w$, m_{top} , $sin^2 \theta_w^{eff}$, R_b , $\alpha_{QED} (m_z) \alpha_s (m_z m_w m_\tau)$, top quark couplings
- Model-independent Higgs width and couplings measurements at percent-permil level
- 10-100 TeV energy scale (and beyond) with Precision Measurements (through EFT)
- \sim 3 σ of effect of Higgs self-coupling from Vertex corrections (also maybe directly with FCC-ee 500GeV)
- Only machine with possible investigation of Hee coupling at $\sqrt{s} = m_{H}$

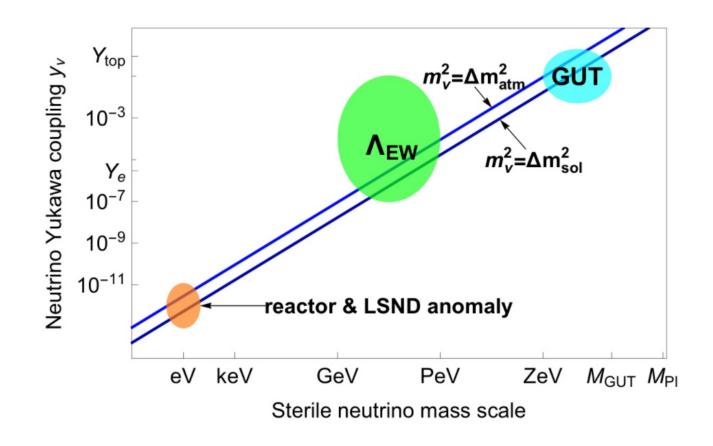
• <u>Discover</u>

- Violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵
- FCNC (Z $\rightarrow \mu \tau$, $e\tau$) in 5 10¹² Z decays and τ BR in 2 10¹¹ Z $\rightarrow \tau \tau$ (also FCNC in top decays with 10⁶ tops)
- Flavour physics with 10^{12} bb events (B \rightarrow s $\tau \tau$ etc..)
- Dark matter as «invisible decay» of H or Z (or in LHC loopholes)
- Direct Discovery
 - Very weakly coupled particle in 5-100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons etc...

• Not only a «Higgs Factory», «Z factory» and «top» are important for 'discovery potential' (also QCD)

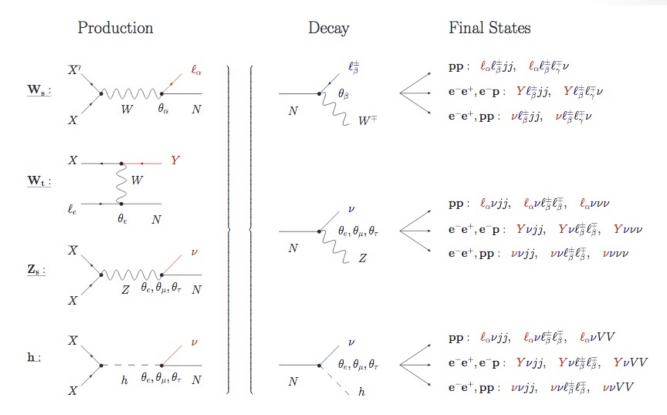
Electroweak eigenstates

$$\begin{pmatrix} e \\ v_e \end{pmatrix}_L \begin{pmatrix} \mu \\ v_\mu \end{pmatrix}_L \begin{pmatrix} \tau \\ v_\tau \end{pmatrix}_L \begin{pmatrix} (e)_R & (\mu)_R & (\tau)_R \\ (v_e)_R & (\nu_\mu)_R & (v_\tau)_R \\ |=1/2 & |=0 \end{pmatrix}$$
 Q= 0


- <u>We measure neutrino parameters, but:</u>
 - No right-handed neutrinos in the SM
 - No mass matrix, no mixing of the neutrino flavour states
- ⇒ Neutrino oscillations are evidence for physics beyond the SM.

- <u>Right handed neutrinos are singlets</u>,
 - No weak interaction
 - No EM interaction
 - No strong interaction
- Can't produce them, Can't detect them
 - So why bother? (also called Sterile)

The Seesaw mechanism with RH neutrinos


- Economic extension by adding a number of Fermionic singlets
 - "Right-handed" or "sterile" neutrinos
- Two mass-differences
 - At least two sterile neutrinos
 - New mass scale, a priori unrelated to the known ones
- Many constraints from experiments on all energy scales
- May be connected to e.g. Dark Matter and Baryogenesis

The Big Picture

12/07/19

Searches at FCC

9

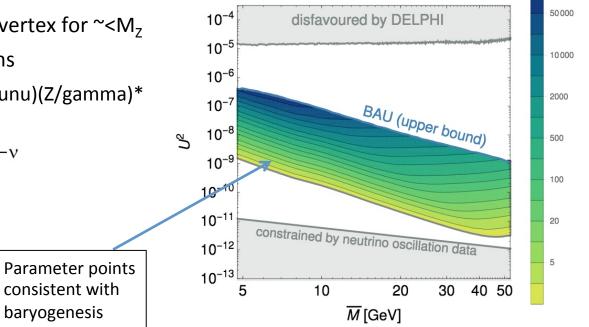
12/07/19

S. Antusch et al.; Int. J. Mod. Phys. A 32 (2017) no.14, 1750078

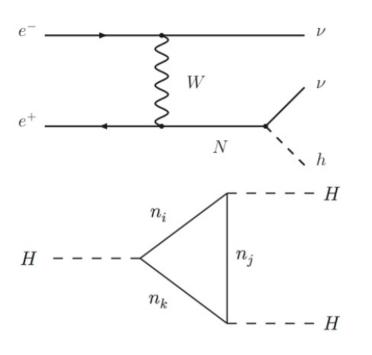
Displaced vertex searches at FCC-ee

- Test minimal type I seesaw hypothesis
- Together with ΔM also tests the compatibility with leptogenesis
- Long life time \rightarrow detached vertex for $\sim < M_z$
- Backgrounds: four fermions

arXiv:1411.5230


 $\sim z$

e⁺e⁻->W^{*}W^{*}, e⁺e⁻->Z^{*}(nunu)(Z/gamma)^{*}

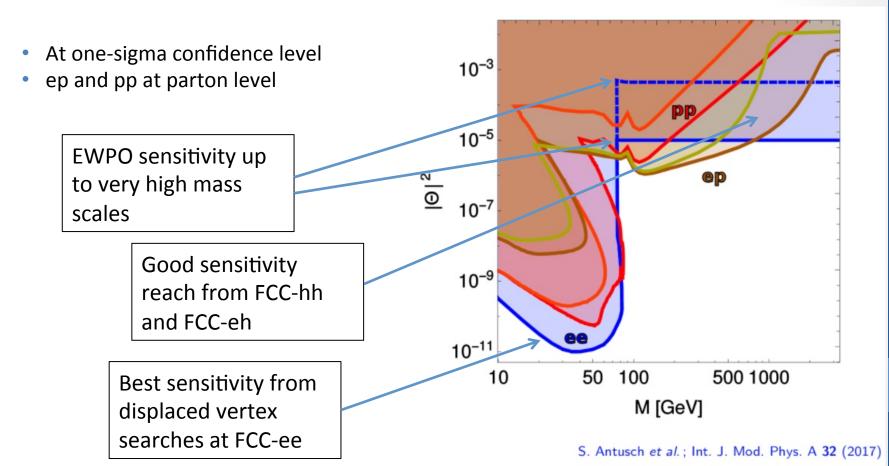

 \int_{a}^{a} or l - v

Antusch et al. JHEP 1809 (2018) 124

NO, FCC-ee at $\sqrt{s} = 90 \,\text{GeV}$

Indirect searches in Higgs properties

 Additional mono-Higgs production mechanism

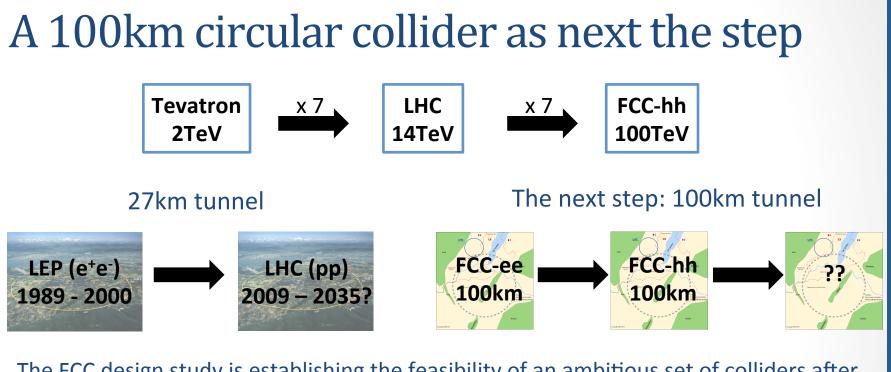

- New Higgs decay channels:
 - Modification of Higgs branching ratios
 - New exotic decay channels: $h \rightarrow vN$, $N \rightarrow SM$
 - New invisible decay channels

• N contribution to the triple Higgs coupling

Outlook for FCC-hh

- Z factory like FCC-ee offers a clean method for detection of Heavy Right-Handed neutrinos
- W bosons are less abundant at the lepton colliders
 - At the 100 TeV FCC-hh W is the dominant particle: Expect 10¹³ real W's
 - There is a lot of pile-up/backgrounds/lifetime/trigger issues which need to be investigated
- But.... in the regime of long lived HNLs the simultaneous presence of
 - the initial lepton from W decays
 - the detached vertex with kinematically constrained decay
 - -> Would allow for a significant background reduction
- Could also served as a characterization both in flavour and charge of the produced neutrino
 - information of the flavour sensitive mixing angles
 - test of the fermion violating nature of the intermediate (Majorana) particle

Overview of sensitivities

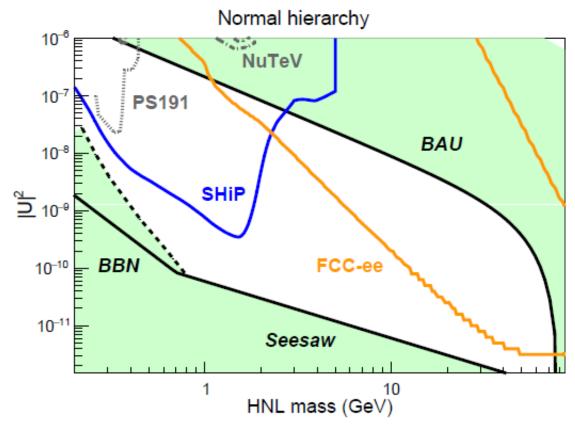


Synergy and complementarity

- <u>FCC-ee</u>
 - Highest sensitivity in the low mass regime (M<m_w)
 - test model predictions: seesaw, leptogenesis
 - SM precision tests have high sensitivity; mass independent
 - Test heavy neutrinos up to ~60TeV
 - Not sensitive to the model details
- <u>FCC-hh and he</u>
 - Direct test of lepton-flavor and number violation
 - Number of heavy neutrino generations and their masses
 - Indirect test via measurement of Higgs potential
 - Sensitive to high mass regime

Conclusion

- The FCC design study is establishing the feasibility or the path to feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology.
- Both FCC-ee and FCC-hh have outstanding physics cases
 - each in their own right
 - the sequential implementation of FCC-ee, FCC-hh, would maximise the physics reach
- FCC has unique prospects of testing model predictions.
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the synergies and complementarities
- Neutrino mass physics should be a benchmark for future collider studies!


The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Both FCC-ee and FCC-hh have outstanding physics cases We are preparing to move to the next step, as soon as possible (EPPSU) 16

12/07/19

Bonus

(a) Decay length 500 μ m to 2 m

With 5 10^{12} Z

Right-Handed neutrino at FCC

Manifestation of Right-Handed neutrinos

One see saw family

$$\theta \approx (\mathbf{m}_{\mathrm{D}}/\mathrm{M}) \qquad \mathbf{v} = \mathbf{v}\mathbf{L}\cos\theta - \mathbf{N}^{c}_{R}\sin\theta \mathbf{m}_{v} \approx \mathbf{m}_{\mathrm{D}}^{2}/\mathrm{M}$$

$$m_N \approx M$$
 $N = N_R \cos\theta + v_L^{c} \sin\theta$
 $|U|^2 \propto \theta^2 \approx m_v / m_N$

What is produced is W,Z decays is: $v_L = v \cos\theta + N \sin\theta$ v = light mass eigenstateN=heavy mass eigentstate $\neq v_L$ active neutrino which couples to weak inter

≠ N_R which does not

- mixing with active neutrinos leads to various observable consequences
 - if very light (eV), possible effect on neutrino oscillations
 - if in keV region (dark matter), monochromatic photons from galaxies with E=mN/2
- possibly measurable effects at High Energy
 - If N is heavy it will decay in the detector (not invisible)
 - PMNS matrix unitarity violation and deficit in Z «invisible» width
 - Higgs, Z, W visible exotic decays $H \rightarrow viNi$ and $Z \rightarrow viNi$, W-> li Ni
 - also in K, charm and b decays via W*-> li \pm N , N \rightarrow lj \pm with any of six sign and lepton flavour combination
 - violation of unitarity and lepton universality in Z, W or τ decays
- Couplings are very small (m_v / m_N) (but *who knows?*) and generally seem out of reach at high energy colliders.

(indirect) Effect of RH v on EW precision obs.

- The relationship $|U|^2 \propto \theta^2 \approx m_v / m_N$ is valid for one family see-saw
- For two or three families the mixing can be larger
- Shaposhnikov, Antush and Fisher, have shown that a slight # in Majorana mass can generate larger mixing between the left- and right-handed neutrinos
- $(vL = v \cos\theta + N \sin\theta) \rightarrow (\cos\theta)^2$ becomes parametrized as $1 + \varepsilon_{\alpha\beta}$ ($\varepsilon_{\alpha\alpha}$ is negative) the coupling to light 'normal' neutrinos is typically reduced.
- In the G_F , $M_Z \alpha_{QED}$ scheme, G_F (extracted from $\mu \rightarrow ev_e v_\mu$) and g should be increased.
- This leads to correlated variations of all predictions upon e or μ neutrino mixing.
- Only the 'number of neutrinos' (R_{inv} and σ_{had}^{peak}) and the tau specific CC observables (tau decays) are sensitive to the tau-neutrino mixing.

Prediction in MUV	Prediction in the SM	Experiment
$[R_{\ell}]_{\rm SM} \left(1 - 0.15(\varepsilon_{ee} + \varepsilon_{\mu\mu})\right)$	20.744(11)	20.767(25)
$[R_b]_{\mathrm{SM}} \left(1 + 0.03(\varepsilon_{ee} + \varepsilon_{\mu\mu})\right)$	0.21577(4)	0.21629(66)
$[R_c]_{\mathrm{SM}} \left(1 - 0.06(\varepsilon_{ee} + \varepsilon_{\mu\mu})\right)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} \left(1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau}\right)$	41.470(15) nb	41.541(37) nb
$[R_{inv}]_{\rm SM} \left(1 + 0.75(\varepsilon_{ee} + \varepsilon_{\mu\mu}) + 0.67\varepsilon_{\tau}\right)$	5.9723(10)	5.942(16)
$[M_W]_{\mathrm{SM}}(1 - 0.11(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	$80.359(11) { m GeV}$	$80.385(15) \mathrm{GeV}$
$[\Gamma_{\text{lept}}]_{\text{SM}}(1 - 0.59(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	$83.966(12) { m MeV}$	$83.984(86) { m MeV}$
$[(s_{W,\text{eff}}^{\ell,\text{lep}})^2]_{\text{SM}}(1+0.71(\varepsilon_{ee}+\varepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_{\mathrm{SM}}(1+0.71(\varepsilon_{ee}+\varepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

Table 1: Experimental results and SM predictions for the EWPO, and the modification in the MUV scheme, to first order in the parameters $\varepsilon_{\alpha\beta}$. The theoretical predictions and experimental values are taken from Ref. **[16]**. The values of $(g_{W,eff}^{\ell,len})^2$ and $(s_{W,eff}^{\ell,lan})^2$ are taken from Ref. **[17]**.

From arXiv:1407.6607