UNIVERSITÉ Grenoble Alpes

Characterization of large-size diamond sensors for medical and nuclear applications

contact : collot@in2p3.fr

PRIMES

<u>J Collot</u>¹, L Abbassi⁵, JF Adam⁶, A Bes¹, G Bosson¹, S Brambilla⁹, W De Nolf⁸, T Crozes⁵, S Curtoni¹, D Dauvergne¹, M Fontana², L Gallin-Martel¹, M-L Gallin-Martel¹, A Ghimouz¹, F Haddad³, J-Y Hostachy¹, G Kessedjian¹, L Iskra⁷, M Jastrzab⁷, Y-H Kim¹⁰, U Koester¹⁰, C Koumeir^{3,4}, A Lacoste¹, J Livingstone¹, S Marcatili¹, V Métivier⁴, J-F Motte⁵, J-F Muraz¹, F Rarbi¹, O Rossetto¹, N Rosuel^{1,6}, M Ramdhane¹, C Sage¹, M Salomé⁸, N Servagent⁴, E

Testa², L Tribouilloy¹, M Yamouni¹

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
 ²Institut de Physique Nucléaire de Lyon, Université de Lyon, CNRS-IN2P3, Lyon, France
 ³GIP ARRONAX, Saint-Herblain, France
 ⁴SUBATECH, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, Nantes, France
 ⁵Institut Néel, CNRS, Grenoble, France
 ⁶ Équipe STROBE, INSERM UA 07, Université Grenoble-Alpes, Grenoble, France
 ⁷Institute of Nuclear Physics, Polish academy of Sciences, Cracow, Poland
 ⁸European Synchrotron Radiation Facility, Grenoble, France
 ⁹INFN Milano, Italy
 ¹⁰Institut Laue-Langevin, Grenoble, France

Context

ESRF

For several years, this collaboration has been studying the particle detection performance of large-size diamond sensors with the prospect of using them in medical or nuclear applications. CVD single & poly crystals as long as hetero-epitaxial sensors have been exposed to β and a particles, to 8.5 keV x-ray bunches at ESRF, to fission products at ILL, to protons at ARRONAX and carbon ions at GANIL. They were also scanned with an EBIC setup at Institut Néel to obtain a 2D map of their response. The

Targeted applications

• Beam tagging hodoscope for fast online ion range verification in hadrontherapy

In vivo online ion range measurement could reduce security margins currently set during treatment planning. A diamond-based beam hodoscope is currently developed at LPSC Grenoble. It aims to provide time and 2D position tagging of ion beams in the context of Prompt-Gamma

Diamond-based odoscope made with 4 large area (1 cm²) stripped sensors

Imaging (CLaRyS collaboration).
 In vivo active dosimetry for synchrotron radiation therapy
 ESRF is one the very few sites in the world that have already carried out clinical tests of intense synchrotron radiation therapy. Due to ultra-high dose

charge collection,	time	and	energy	performance	has been
measured.					

rates, the question of in vivo dosimetry arises. A diamond-based portal active dosimeter is currently developed at LPSC Grenoble. It aims to provide a real-time measurement of the dose delivered to the patient.

Diamond sensors Characterization of diamond sensors Pulsed x-ray beam (8.5keV, 100ps) at ESRF ID21 X-ray Microscopy beamline Crystal structure 1400 photons (8.5 keV) per bunch Polycrystalline Single-crystal **Crystal quality – Charge collection** Xray beam ESRE **CVD** Diamond **CVD diamond** 0.7 µs Size - Price - Availability (pCVD) (sCVD) Wavecatcher LAL-CNRS/IRFU-CEA Alternative : **Diamond hetero-epitaxy on iridium substrate (DOI)** Large crystals (> 1cm²) with good charge collection properties still at R&D stage Diamono Pream Face 1 diamond intrinsic properties Face 2 Resistivity > 10¹³ Ω.m \rightarrow Low leakage currents 13.1 eV e/h pair creation energy \rightarrow Good Signal-to-Noise Ratio (SNR) 5.4 MeV α particles **Displacement Energy** 43 eV 95 MeV/u carbon jon beam at GANIL \rightarrow Radiation hardness \geq 2000 cm²/V/s Charge carrier mobilities \rightarrow Fast time response Current preamp Diamond 1 Diamond Scintillator + PMT Atomic number 6 \rightarrow Tissue-equivalent 8888 <u>- 888</u>8 Cu collimator Vacuum chamber

	Results		
	Time resolution		
Pulsed photon beam (8.5 KeV) $ \begin{array}{c} \int \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & -0.09648 \pm 0.00187 \\ Sigma & 0.02571 \pm 0.00182 \\ u_{an} & 0.02571 \pm 0.0018 \\ u_{an} & 0.02571 \pm 0.0018 \\ u_{an} & 0.025$	5.4 MeV a particle $s_{t}^{2/ndf} \xrightarrow{56.16}_{Constant} \xrightarrow{62.61 \pm 100}_{Sigma} \xrightarrow{0.03743 \pm 0.07}_{Sigma} \xrightarrow{0.03743 \pm 0.07}$	95 MeV/u Carbon ion beam 5/49 5/49 5/49 5/49 5/49 5/286 50124 50124 50124 50124 50124 50124 50124 50124 50024 50035 500035 500035 500035 5000005 500005 500005 500005 500005 500005 500005 500005 5000000000000000000000000000000000000	Radiation ratio mak nuclear ap • a time • an ene
		Structure of pCVD diamond	Synthetic

Conclusion and Prospects

Radiation hardness, fast response and good signal-to-noise ratio make diamond sensors good candidates for medical and nuclear applications :

- a time resolution better than 40 ps
- an energy resolution better than 10 %

Synthetic pCVD diamond sensors are foreseen for online hadrontherapy beam tagging and dosimetry applications.

Large area (> 1 cm²) diamond sensors with good and homogeneous charge collection properties are still at the R&D level. Much more intense coordinated efforts should address this point in the future.

References : ML Gallin-Martel et al, ANIMMA 2017, EPJ Web of Conferences 170, 09005 (2018) https://doi.org/10.1051/epjconf/201817009005 J Collot et al, PoS - Proceedings of Science EPS-HEP2017, pp.781 (2017) https://pos.sissa.it/314/781/

This work partly takes place within the CERN RD 42 collaboration. http://rd42.web.cern.ch/rd42